These talks have been re-scheduled for November 5-6, 2020.
Host: He
Location: Rolla Building G5
Talk 1 (3pm)
Luke Settles (Eli Little)
Title: Internships, Pharma, & Statistics: Musings of an Early-Career Statistician
Abstract:
Attendees will learn about the following topics.
Practical advice will be given throughout, and discussion and questions are highly encouraged.
Host: Olbricht
Talk 2 (4:15pm)
Speaker: Dr. Nick Fewster-Young (University of South Australia)
Title: Exploring new existence results in fractional differential equations
Abstract: This talk will explore some fundamental theories and results about
singular fractional differential equations and present some new existence
results in this field. The two challenges in this theory stem from one in the
singular case where time or space is singular in the equation, while in the
fractional setting, there are key obstacles around the commutativity of
fractional derivatives. The particular scenarios which are explored will be
nonlinear problems with boundary value conditions on the real line. Finally,
the talk will present the ideas to build these results onto time scales.
Host: Bohner
Thursday, February 27, 4pm
Rolla Building G5
Samer Assaf
Assistant Professor
Department of Mathematics and Natural Sciences
American University of Kuwait
Title: Generalization of Metrics and Fixed-Point Theorems
Abstract: A distance on a set is a comparative function. The smaller the distance between two elements of that set, the closer, or more similar, those elements are. Frechet axiomatized the notion of distance into what is today known as a metric. In this talk we present several generalizations of Frechet’s axioms. These include partial metric, strong partial metric, partial Metric, strong partial Metric and Metrics. Those generalizations allow for negative distances, non-zero distances between a point and itself and even the comparison of tuples. Using the generalized metrics mentioned above we create topological spaces and investigate convergence, limits and continuity in them.
Host: Insall
Ingram Lecture
Thursday, March 5
295 Toomey Hall
Talk 1: 3pm
Talk 2: 4:30pm
Dr. Charles Epstein
Thomas A. Scott Professor of Mathematics
Department of Mathematics
University of Pennsylvania
General Audience Talk
Title: The Geometry of the Phase Retrieval Problem, I --- Graveyard of Algorithms
Abstract: In several high resolution imaging modalities that use coherent x-rays to illuminate the sample the measured data can be interpreted as the modulus of the Fourier transform of a function describing the unknown object. The Fourier transform is complex valued and the phase cannot be measured directly. I will briefly explain the physics that underlies these facts. In order to reconstruct the object from such measurements we must “retrieve” the unmeasured phase of the Fourier transform. To do this requires some auxiliary information about the object, such as its general size and shape. This is a notoriously difficult problem. I will discuss the underlying geometric reasons for these difficulties, algorithms for recovering the phase and approaches to improving their performance.
Mathematics Colloquium
Title: The Geometry of the Phase Retrieval Problem, II
Abstract: In the first talk we introduced a geometric formulation of the phase retrieval problem in coherent diffraction imaging (CDI). In that talk we showed how this problem can be formulated as a search for the intersection between two subsets A, B of a very high dimensional space. A is always a torus and B is a subset defined by the auxiliary information, which makes this a non-linear problem. In the second talk we explain why A and B often fail to meet transversely and the effect that this has on the performance of standard algorithms to find the intersections of A and B. This is illustrated with some simple model problems. We then examine the linearization of the maps used to define these algorithms at fixed points, where they display some rather surprising properties. We close our discussion with an entirely different approach to the phase retrieval problem.
Tuesday, September 17, 4pm-5:15pm
Rolla Building G5
Samuel Walsh
Associate Professor
Mathematics Department
University of Missouri
Title: Water waves with smooth exponentially localized vorticity
Abstract: In this talk, we discuss recent success in establishing the existence of solutions to the water wave problem with exponentially decaying vorticity. These are two-dimensional stationary waves in a finite-depth body of water beneath vacuum. An external gravitational force acts in the bulk, and the effects of surface tension are felt on the air-sea interface. Our approach involves modeling the corresponding stream function as a spike solution to a singularly perturbed elliptic PDE. This is joint work with Mats Ehrnström (NTNU) and Chongchun Zeng (Georgia Tech).
Host: Murphy
Friday, October 11, 4pm-5:15pm
Rolla Building G5
Jiangguo Liu
Professor
Department of Mathematics
Colorado State University
Title: Weak Galerkin Finite Element Methods for Partial Differential Equations
Abstract: In this talk, we discuss the novel weak Galerkin (WG) finite element methods for several different types of partial differential equations (PDEs). The WG methodology provides reconstructed weak gradient or divergence or curl at the discrete level through integration by parts. Then these reconstructed discrete gradient or divergence or curl can be used to approximate the classical counterparts in the variational forms for the elliptic, elasticity, and Stokes equations. WG allows use of polytopal meshes. Combined with time-marching schemes, WG finite element methods can be developed for time-dependent PDEs. We shall discuss efficient implementation strategies for WG in Matlab and C++. Numerical results of WG for various applications (Darcy flow, Stokes flow, linear elasticity) will be presented. This talk is based on a series of joint work with several collaborators.
Host: He
Friday, October 25, 4pm-5:15pm
Rolla Building G5
Satoshi Masaki
Associate Professor
Department of Systems Innovation
Graduate School of Engineering Science
Osaka University
Title: Scattering for mass-critical Klein-Gordon equation in high dimensions
Abstract: We consider the asymptotic behavior of solutions to the mass-critical Klein-Gordon equation. Because of the nonlinear nature, there are several kinds of possible behavior. In this talk, I consider a sharp criterion for scattering. The two-dimensional case was previously studied by Killip-Stovall-Visan. We extend the result to higher dimensions. One difficulty is the non-polynomial nature of the nonlinearity. This talk is based on joint work with Guo (Monash) and Cheng (Nanjing).
Host: Murphy
Friday, November 8, 4pm-5:15pm
Rolla Building G5
Keith Promislow
Professor and Chair
Department of Mathematics
Michigan State University
Title: The Packing Dichotomy and Morphological Complexity in Amphiphilic Polymers
Abstract: Amphiphlilic molecules, also known as surfactants, are composed of two components, one with a strong affinity for a solvent and one with a strong aversion. When blended with solvent they undergo a novel phase separation process that produces morphologies that are of molecular width in one or more directions (thin). A key benchmark problem is to predict the evolution of a codimension one interface that is actively absorbing molecules that are dispersed at low density within the solvent. This leads to a fundamental ``packing dichotomy'' that balances the energetic preference for the dispersed molecules to join a structure against the preference for the structure to remain thin. We model this system with the Functionalized Cahn Hilliard free energy, and analyze its gradient flow, rigorously deriving a curve-lengthening evolution for codimension-one interfaces immersed in a solvent with a weak dispersion of amphiphilic molecules. We supplement the analysis with detailed simulations that show that as the initial density of dispersed molecules is increased the curve lengthening regime gives way to pearling (internal micelle formation) and a bicycle-chain buckling evolution that generates corners, endcaps, and loops. Further increases in initial density lead to curve splitting. We show that the resolution of the packing dichotomy lead to delicate choices that underpin what the experimental literature calls the onset of morphological complexity.
Host: Han
Friday, November 15, 4pm-5:15pm
Rolla Building G5
Michael Schneier
Math Research Center Postdoctoral Fellow
Department of Mathematics
University of Pittsburgh
Title: Pressure Recovery for Reduced Order Models of the Incompressible Navier-Stokes Equations
Abstract: For incompressible flow models, the pressure term serves as a Lagrange multiplier to ensure that the incompressibility constraint is satisfied. In engineering applications, the pressure term is necessary for calculating important quantities based on stresses like the lift and drag. For reduced order models (ROMs) generated via a Proper Orthogonal Decomposition (POD), it is common for the pressure to drop out of the equations and produce a velocity-only ROM. To recover the pressure, many techniques have been numerically studied in the literature; however, these techniques have undergone little rigorous analysis. In this talk, we explore several ways to recover the pressure using both strictly incompressible and non-incompressible data. Theoretical stability and convergence results for these different approaches are presented. Additionally, numerical results confirming the theoretical analysis will be shown.
Host: Singler
Friday, November 22, 4pm-5:15pm
Rolla Building G5
Qi Wang
Professor of Mathematics
Adjunct Professor of Chemistry and BioChemistry
Department of Mathematics
Interdisciplinary Mathematics Institute and Nano Center
University of South Carolina
Title: Structure-preserving numerical approximations to thermodynamical consistent model.
Abstract: Thermodynamical consistent models are the ones that are derived from the thermodynamical principles, especially, the second law of thermodynamics. In these models, the entropy is increasing or equivalently energy is decreasing. When designing numerical approximations to the differential equations in the models, one would like to retain the entropy or energy property. These yield the structure-preserving numerical schemes. In this talk, I will discuss a general approach to any thermodynamical models for developing their structure-preserving numerical approximations. A few examples in multiphase fluid models will be given to illustrate the paradigm.
Host: Han
Tuesday, December 3, 4pm-5:15pm
Rolla Building G5
Title: Curvature bounds for regularized Riemannian metrics with applications to moduli spaces
Abstract: We investigate a regularization of riemannian metrics by mollification. Assuming both-sided bounds on the Ricci tensor and a lower injectivity radius bound we obtain a uniform estimate on the change of the sectional curvature. Actually, our result holds for any metric with a uniform bound on the W^{2,p} harmonic radius. We also provide a weaker estimate under lower Ricci and injectivity radius bound.
We are motivated by questions from the study of moduli spaces of riemannian metrics and use our estimates to gain some insight on topological aspects of such spaces.
Host: Insall
Friday, December 6, 4pm-5:15pm
Rolla Building G5
Jun-Ichi Segata
Professor
Department of Mathematical Sciences
Kyushu University
Title: Modified scattering for the complex valued nonlinear Klein-Gordon equation
Abstract: We consider the long time behavior of solutions to the initial value problem for the “complex valued”cubic nonlinear Klein-Gordon equation (NLKG) in one space dimension. The complex valued nonlinear Klein-Gordon equation arises in various fields of physics. For example, the nonlinear Dirac equation in the relativistic quantum fields can be reduced to the system of the complex valued nonlinear Klein-Gordon equations. In this talk, we give a large time asymptotic profile of solutions to (NLKG). We also consider the final state problem for the gauge invariant quadratic nonlinear Klein-Gordon equation in two space dimension.
Host: Murphy
Steven Wise
University of Tennessee at Knoxville
Friday, May 10, 2019. 4pm-5:15pm in Rolla G5
Title: Convergence Analyses of some Nonlinear Multi-Level Algorithms for Non-Quadratic Convex Optimization Problems via Space Decomposition and Subspace Correction
Abstract: Nonlinear multi-level methods, such as the full approximation storage (FAS) multigrid scheme, are widely used solvers for nonlinear problems. In this presentation, a new framework to analyze FAS-type methods for convex optimization problems is developed. FAS can be recast as an inexact version of a nonlinear multigrid method based on space decomposition and subspace correction, namely the successive subspace optimization (SSO) method of Jinchao Xu and coauthors. The theory is quite general and is an abstraction of both SSO and the preconditioned steepest descent (PSD) method. In our algorithm, we show that the local problem in each subspace can be simplified to be linear and one gradient descent iteration is enough to ensure linear convergence of the FAS scheme. This work is joint with Long Chen and Xiaozhe Hu.
Host: Han
Nicholas Wintz
Lindenwood University
Friday, May 3, 2019. 4pm-5:15pm in Rolla G5
Title: The Kalman filter on stochastic time scales (joint work with Dylan Poulsen, Washington College)
Abstract: In this paper, we discretize a stochastic linear time-invariant system to a dynamic system on a time scale. We then develop a Kalman filter to estimate the true state for the corresponding system. Here, the measurement-update and time-update equations account for the size of the time step when the time scale is generated randomly. Numerical examples are also provided.
Host: Bohner, Grow
Friday, April 26, 4pm-5:15pm
Rolla Building, Room G5
Leo Rebholz
Professor
Department of Mathematical and Statistical Sciences
Clemson University
Title: A proof that Anderson acceleration really does accelerate convergence in fixed point iterations, with application to incompressible flow
Abstract: We propose, analyze and test Anderson-accelerated Picard iterations for solving the incompressible Navier-Stokes equations (NSE). Anderson acceleration has recently gained interest as a strategy to accelerate linear and nonlinear iterations, based on including an optimization step in each iteration. We extend the Anderson-acceleration theory to the steady NSE setting and prove that the acceleration improves the convergence rate of the Picard iteration based on the success of the underlying optimization problem. The convergence is demonstrated in several numerical tests, with particularly marked improvement in the higher Reynolds number regime. Our tests show it can be an enabling technology in the sense that it can provide convergence when both usual Picard and Newton iterations fail. Lastly, generalization of the theory to general fixed point iterations will be given.
Host: He
Friday, March 22, 4pm-5:15pm
Rolla Building, Room G5
Kenji Nakanishi
Professor
Research Institute for Mathematical Sciences
Kyoto University
Title: Global dynamics of the nonlinear Schrödinger equation with potential
Abstract: The nonlinear Schrödinger equation is a typical nonlinear disperisve PDE, which describes various wave phenomena in terms of dispersion and nonlinear interactions of the waves. Such PDEs are known to generate various types of solutions, typically scattering, solitons and blow-up. The goal of this study is to classify the solutions in terms of their behavior forward and backward in time, and to predict it from the initial data. In this talk, we consider the equation with a cubic nonlinearity and a linear potential, so that we can characterize the ground state solitons and the first excited solitons for small mass. The main result is classification into 9 sets of solutions with small mass under an energy constraint slightly above the first excited solitons.
Host: Murphy
Friday, February 1, 4pm-5:15pm
Rolla Building, Room G5
Abner Salgado
Associate Professor
Department of Mathematics
University of Tennessee
Title: Regularity and rate of approximation for obstacle problems for a class of integro-differential operators
Abstract: We consider obstacle problems for three nonlocal operators:
A) The integral fractional Laplacian
B) The integral fractional Laplacian with drift
C) A second order elliptic operator plus the integral fractional Laplacian
For the solution of the problem in Case A, we derive regularity results in weighted Sobolev spaces, where the weight is a power of the distance to the boundary. For cases B and C we derive, via a Lewy-Stampacchia type argument, regularity results in standard Sobolev spaces. We use these regularity results to derive error estimates for finite element schemes. The error estimates turn out to be optimal in Case A, whereas there is a loss of optimality in cases B and C, depending on the order of the integral operator.
Biographical Sketch: Dr. Abner J. Salgado is an Associate Professor at the Department of Mathematics at the University of Tennessee, Knoxville. His research revolves around the Numerical Analysis of partial differential equations and related questions. He is interested in the design, analysis and implementation of approximation schemes for complex fluids, nonlocal problems, degenerate and singular diffusion problems, and nonlinear partial differential equations in general.
Host: He
Friday, January 25, 4pm-5:15pm
Rolla Building, Room G5
Ari Stern
Associate Professor
Department of Mathematics
Washington University in St. Louis
Title: Hybrid finite element methods for geometric PDEs
Abstract: Many geometric PDEs have local properties, such as symmetries and conservation laws, that one might wish a numerical method to preserve. With classical finite element methods, it is difficult to make sense of such properties, except in a weak or averaged sense. I will discuss how hybrid finite element methods, based on non-overlapping domain decomposition, provide a natural framework for talking about such properties. Specifically, I will discuss some recent results obtained by applying this approach to the multisymplectic conservation law for Hamiltonian PDEs (joint with Robert McLachlan), as well as to charge conservation in Maxwell's equations (joint with Yakov Berchenko-Kogan).
Biographical Sketch: Dr. Ari Stern is Associate Professor of Mathematics and Statistics at Washington University in St. Louis, where he has been since 2012. Before this, he received a BA and MA in Mathematics from Columbia University and a PhD in Applied and Computational Mathematics from Caltech, and he did postdoctoral work at UCSD. His research is primarily focused on structure-preserving numerical methods for differential equations, particularly for systems with symmetries, conservation laws, or other geometric structures.
Host: He
Dichotomies for time-varying systems
Ioan-Lucian Popa
Senior Lecturer
Department of Exact Science
Faculty of Science and Engineering
"1 Decembre 1918" University of Alba Iulia
Friday, December 7
4:00-5:15PM
Rolla Bldg G-5
This talk will present a state-of-the-art survey for the concept of dichotomy for linear time-varying systems. In the qualitative theory of time-varying systems, the notions of dichotomy and the more general concept of trichotomy play a vital role. For the deterministic case, uniform and non-uniform approaches for both invertible and non-invertible systems are presented. Also, for stochastic systems, the problem of H2 filtering in the case when the Lyapunov operator is dichotomic is pointed out.
Ioan-Lucian Popa obtained his PhD in 2012 from West University of Timisoara, Romania. From 2013 to 2017, Dr. Popa was Assistant Professor at “1 Decembrie 1918” University of Alba Iulia. Since 2017, Dr. Popa is Senior Lecturer at the same university. His research interests are in system and control theory.
Host: Bohner
Mean Curvature Flow and Variational Integrators
Yakov Berchenko-Kogan
Chauvenet Postdoctoral Lecturer
Department of Mathematics
Washington University in St. Louis
Friday, November 30
4:00-5:15 PM
Rolla Bldg G-5
Mean curvature flow is a well-studied geometric flow under which a surface moves in such a way as to decrease its area as fast as possible. Some surfaces, such as spheres and cylinders, evolve under mean curvature by dilations. Such surfaces, called self-shrinkers, are models for the singularities that can occur under mean curvature flow. The first nontrivial example of a self-shrinker was a torus proved to exist by Angenent in 1989. Self-shrinkers can be seen as the critical points of a weighted surface area functional called the entropy. There are simple formulas for the entropies of spheres and cylinders, but there is no such formula for the entropy of the Angenent torus, nor is their a formula describing the surface itself. The best previous result is a 2018 paper showing that the entropy of the Angenent torus is less than two. I numerically estimated the entropy of the Angenent torus to be 1.8512186, with an estimated accuracy of 0.0000019, using a variational numerical approach in order to facilitate future work on proving rigorous error bounds.
In this talk, I will introduce the basics of mean curvature flow and variational integrators and discuss how I used these ideas to numerically estimate the Angenent torus and its entropy. I will discuss numerical evidence for the error bounds of my estimate and describe a future strategy for rigorously proving such error bounds.
Host: He
Inviscid damping near Couette flow in a finite channel
Hao Jia
Assistant Professor
Department of Mathematics
University of Minnesota
Friday, October 26
4:00-5:15 PM
Rolla Bldg G-5
The two dimensional Euler equation is globally wellposed, but the long time behavior of solutions is not well understood. Generically, it is conjectured that the vorticity, due to mixing, should weakly but not strongly converge as $t\to\infty$. In an important work, Bedrossian and Masmoudi studied the perturbative regime near Couette flow $(y,0)$ on an infinite cylinder, and proved small perturbation in the Gevrey space relaxes to a nearby shear flow. In this talk, we will explain a recent extension to the case of a finite cylinder (i.e. a periodic channel) with perturbations in a critical Gevrey space for this problem. The main interest of this extension is to consider the natural boundary effects, and to ensure that the Couette flow in our domain has finite energy. Joint work with Alex Ionescu.
Hao Jia obtained his PhD in 2013 from University of Minnesota under the supervision of Vladimir Sverak. He was a Dickson Instructor in University of Chicago from 2013 to 2016, and spent one year as member in Institute for Advanced Study, Princeton. Dr. Jia is currently an assistant professor in University of Minnesota. His research interest is in the theory of partial differential equations, from fluids and waves.
Host: Murphy
Asymptotic behavior of quadratic Klein-Gordon equation in two dimensions
Satoshi Masaki
Associate Professor
Department of Systems Innovation
Graduate School of Engineering Science
Osaka University
Friday, September 21, 2018
4:00-5:15 PM
Rolla Bldg G-5
In this talk, we discuss asymptotic behavior of solutions to nonlinear Klein-Gordon equation with the gauge invariant power type nonlinearity of the critical order. By using the expansion of the nonlinearity, we see that there exist solutions which asymptotically behaves like a free solution with logarithmic phase correction. It will turn out that the behavior of a complex-valued solution is much complicated than that of a real-valued solution.
Dr. Masaki earned his PhD in Mathematics from Kyoto University in the Spring of 2009 under the supervision of Yoshio Tsutsumi. He began his career at Gakushuin University in Spring 2010 as an Assistant Professor. In Fall 2012, he moved to Hiroshima University as an Associate Professor. Since Spring 2016, he has been an Associate Professor at Osaka University. Dr. Masaki's main research interests lie in the areas of harmonic analysis and nonlinear dispersive equations, with a primary focus on the asymptotic behavior of solutions to nonlinear Schrödinger equations.
Host: Murphy
Yuefeng Wu
Assistant Professor
Department of Mathematics and Computer Science
University of Missouri St. Louis
Thursday, April 26, 2018
4:00-5:15 PM
Rolla Bldg G-5
Title: Hit and Run ARMS: Adaptive Rejection Metropolis Sampling with Hit and Run Random Direction
Abstract: An algorithm for sampling from non-log-concave multivariate distributions is proposed, which improves the adaptive rejection Metropolis sampling (ARMS) algorithm by incorporating the hit and run sampling. It is not rare that the ARMS is trapped away from some subspace with significant probability in the support of the multivariate distribution. While the ARMS updates samples only in the directions that are parallel to dimensions, our proposed method, the hit and run ARMS (HARARMS), updates samples in arbitrary directions determined by the hit and run algorithm, which makes it almost not possible to be trapped in any isolated subspaces. The HARARMS performs the same as ARMS in a single dimension while more reliable in multidimensional spaces. Its performance is illustrated by a Bayesian free-knot spline regression example. We showed that it overcomes the well-known 'lethargy' property and decisively find the global optimal number and locations of the knots of the spline function.
Biographical Sketch: Dr. Yuefeng Wu obtained his PhD in statistics from North Carolina State University. He then worked as a postdoc researcher in the Department of Biological Statistics and Computational Biology in Cornell University and a visiting assistant professor in University of California Santa Cruz. He is now an assistant professor in the department of mathematics and computer science in University of Missouri Saint Louis. His main research interest is in Bayesian statistics, ranging from the theoretical study in the asymptotic properties of some non- or semi-parametric methods, to applications of Bayesian methods to real world data analysis. He also has interest in statistical computation (related to algorithms that more or less related to Bayesian methods) and Bayesian network learning (especially those related to causal inference).
Host: Wen
George Markowsky
Professor and Chair of Computer Science
Missouri University of Science and Technology
Friday, April 6, 2018
4:00-5:15 PM
Rolla Bldg G-5
Title: The Not-So-Golden Ratio
Abstract: The golden ratio, also called by different authors the golden section, golden number, golden mean, divine proportion, and division in extreme and mean ratios, has captured the popular imagination and is discussed in many books and articles. Generally, the mathematical properties of the golden ratio are correctly stated, but much of what is presented about the golden ratio in art, architecture, literature, and esthetics is false or seriously misleading. Unfortunately, these statements about the golden ratio have achieved the status of common knowledge and are widely repeated. Even current high school geometry textbooks make many incorrect statements about the golden ratio. This talk will set the record straight about the golden ratio. It will discuss its mathematical significance as well as some of the most commonly repeated falsehoods about it.
Dr. George Markowsky earned a BA in mathematics at Columbia University and an MA and PhD in mathematics at Harvard University. He is currently Chair of the Computer Science Department at S&T. Before coming to S&T, Dr. Markowsky worked at the IBM T. J. Watson Research Center and at the University of Maine where he served as Chair of the Computer Science Department and Associate Director of the School of Computing and Information Science.
Host: Clark
Cones over locally connected curves
Daria Michalik
Assistant Professor
Faculty of Mathematics and Natural Sciences
College of Science
Cardinal Stefan Wyszynski University
Wednesday, March 21, 2018
4:00-5:15PM
Rolla Bldg G-5
Dr. Daria Michalik earned her PhD from Institute of Mathematics Polish Academy of Science in June 2007 under the supervision of Professor Henryk Torunczyk. Since October 2008 she has been Assistant Professor at the Faculty of Mathematics and Natural Sciences, College of Science of Cardinal Stefan Wyszynski University in Warsaw (Poland). Her main research interest lies in the continuum theory, hyperspaces theory and geometric topology.
Generalized ODEs: an overview and new trends
Jaqueline Mesquita
Assistant Professor
Department of Mathematics
Universidad de Brasilia, Brazil
Friday, January 26, 2018
4:00-5:15 PM
Rolla Bldg G-5
Abstract: In 1957, Jaroslav Kurzweil introduced in the literature a class of integral equations called generalized ordinary differential equations in order to investigate results on continuous dependence of solutions with respect to parameters (see [5]). However, recent works have shown that these equations encompass several types of equations, such as impulsive equations, functional dynamic equations on time scales, measure functional differential equations, measure neutral functional differential equations, among others. See [1,2,3,4,6] and the references therein.
In this talk, we provide a basic overview of generalized differential equations and present some recent results and new trends in this area.
M. Federson, M. Frasson, J. Mesquita, P. Tacuri, Measure neutral functional differential equations as generalized ODEs, submitted.
M. Federson, R. Grau, J. G. Mesquita, E. Toon, Boundedness of solutions of measure differential equations and dynamic equations on time scales, Journal of Differential Equations 263 (2017), 26-56.
M. Federson, J. G. Mesquita, A. Slavík, Measure functional differential equa- tions and functional dynamic equations on time scales, Journal of Differential Equations 252 (2012), 3816-3847.
M. Federson, J. G. Mesquita, A. Slavík, Basic results for functional differential and dynamic equations involving impulses, Math. Nachr. 286(2-3) (2013), 181- 204.
J. Kurzweil, Generalized ordinary differential equations and continuous depen- dence on a parameter, Czech. Math. J. 7(82) (1957), 418-448.
A. Slavík, Dynamic equations on time scales and generalized ordinary differential equations, J. Math. Anal. Appl., 385 (2012), 534–550.
Jaqueline Godoy Mesquita completed her PhD in Mathematics in 2012 at the University of São Paulo and the Academy of Sciences of Czech Republic in Prague. She had two post-doctorate positions, one at the Universidad de Santiago de Chile-USACH and the other one at University of São Paulo-USP. She held the position of Assistant Professor at University of São Paulo-USP (2013-2015) and is currently Assistant Professor at University of Brasília-UnB since 2015. She is Affiliated Member of the Brazilian Academy of Sciences (2018-2022) and Regional Secretary of the Brazilian Mathematical Society (2017-2019). She is member of the editorial board of the "Journal of Mathematics and Statistics" and "Advances in Dynamical Systems and Applications". She has participated in the 5th Heidelberg Laureate Forum 2017, in Heidelberg, Germany and was selected to be an Oberwolfach Leibniz Fellow during 2018. She has published 17 articles since 2011, delivered more than 60 lectures in conferences/seminars in Brazil and several other countries. She coordinated 7 research projects. She has won the International Bernd-Aulbach Prize for Students, awarded by the International Society of Difference Equations. Her field of interests includes functional differential equations, impulsive differential equations, generalized ordinary differential equations, and dynamic equations on time scales.
Host: Bohner
On square integrable solutions and principal solutions for linear Hamiltonian systems
Petr Zemánek
Associate Professor
Department of Mathematics and Statistics
Faculty of Science
Masaryk University
Friday, January 19, 2018
4:00-5:15 PM
Rolla Bldg G-5
Abstract: Zemanek_Abstract
Dr. Zemánek earned his PhD from Masaryk University (Czech Republic) in June 2011 under the supervision of Roman Šimon Hilscher. Since July 2017 he has been Associate Professor at the Department of Mathematics and Statistics of Masaryk University. His main research interest lies in the spectral theory of differential, difference and dynamic equations or systems with a special attention paid to the theory of discrete symplectic systems.
Host: Akin
Coexistence problem for positive solutions of second order differential equations
Zuzana Došlá
Professor
Department of Mathematics and Statistics
Faculty of Science
Masaryk University
Thursday, January 18, 2018
Time: 4:00-5:15 PM
Location: Rolla Bldg G-5
Abstract: We study the second order Emden-Fowler type differential equation in the super-linear case. Using a new Holder-type inequality, we resolve the open problem on the possible coexistence on three possible types of nononscillatory solutions by using a new approach based on a special energy-type function, the existence of positive slowly decaying solutions is examined.
Zuzana Dosla is Full Professor at the Department of Mathematics and Statistics of Masaryk University. Her main research interest lies in the asymptotic theory and boundary value problems for differential and difference equations.
Host: Akin
Group Sparsity via Approximated Information Criteria
Nan Lin
Associate Professor
Department of Mathematics,
Department of Biostatistics,
Washington University in St. Louis
Thursday, October 4, 2017
4:00-5:15 PM
Rolla Bldg G-5
We propose a new group variable selection and estimation method, and illustrate its application for the generalized linear model (GLM). This new method, termed “gMIC”, was derived from approximating the information criterion by a smooth unit dent function. The gMIC is derived as a smooth approximation of a group-version modification of the information criterion. The approximated information criterion is further reparameterized in a way that not only renders sparse estimation from a smooth programming problem but also facilitates a convenient way of circumventing post-selection inference. Compared to existing group variable selection and estimation methods, the gMIC is free of parameter tuning and hence computationally advantageous. We also establish the oracle property of the proposed method that is supported by both simulation studies and real examples.
Nan Lin, PhD, is currently an associate professor of Statistics at the Dept. of Mathematics, and Dept. of Biostatistics, Washington Univ. in St. Louis. He obtained his PhD in statistics from University of Illinois at Urbana-Champaign in 2003. Before joining Washington University, he was a postdoctoral associate at the Center for Statistical Genomics and Proteomics, Yale University. His methodological research is in the areas of statistical computing for massive data, Bayesian regularization, bioinformatics, longitudinal and functional data analysis and psychometrics. His applied research involves statistical analysis of data from anesthesiology, genomics and cognition. He was awarded "The most promising paper published in Bayesian Analysis in the last five years, The International Society for Bayesian Analysis" in 2016.
Host: Wen
Asymptotic behavior for the nonlinear Schrödinger equation with critical homogeneous nonlinearity
Satoshi Masaki
Associate Professor
Department of Systems Innovation
Graduate School of Engineering Science
Osaka University
Friday, September 22, 2017
4:00-5:15 PM
Rolla Bldg G-5
We will consider asymptotic behavior of solutions to nonlinear Schrödinger equations with a homogeneous nonlinearity of critical degree. It was previously known that for the critical case, the possible asymptotic behavior heavily depends on the shape of nonlinearity. In this talk, we consider general homogeneous nonlinearities including the non-polynomial case and discuss how to determine the behavior. We also discuss an application to Klein-Gordon equation.
Dr. Masaki earned his PhD in Mathematics from Kyoto University in the Spring of 2009 under the supervision of Yoshio Tsutsumi. He began his career at Gakushuin University in Spring 2010 as an Assistant Professor. In Fall 2012, he moved to Hiroshima University as an Associate Professor. Since Spring 2016, he has been an Associate Professor at Osaka University. Dr. Masaki's main research interests lie in the areas of harmonic analysis and nonlinear dispersive equations, with a primary focus on the asymptotic behavior of solutions to nonlinear Schrödinger equations.
Host: Murphy
On a modification of the Schur algorithm that leads to linear pencils of difference operators
Maksym Derevyagin
Visiting Assistant Professor
Department of Mathematics
University of Mississippi
Friday, September 15, 2017
4:00-5:15 PM
Rolla Bldg G-5
The Schur algorithm is one of the key ingredients of the theory of orthogonal polynomials on the unit circle. It is worth noting that the theory of orthogonal polynomials on the unit circle has witnessed a great development since the beginning of the century due to an enormous contribution by Barry Simon. However, the modification we are going to discuss was implicitly introduced by H.S. Wall in 1944 and it can be thought of as a transform between Schur functions, Carathéodory functions, and Herglotz-Nevanlinna functions. At the same time, this transformation provides us with a bijection between orthogonal polynomials on the unit circle and some new objects on the real line. More precisely, it will be shown that, when applying the Wall transformation, instead of orthogonal polynomials on the real line, we get a sequence of orthogonal rational functions that satisfy three-term recurrence relation of the form (H−λJ)u=0, where u is a semi-infinite vector, whose entries are rational functions. Besides, J and H are Hermitian Jacobi matrices for which a version of the Denisov-Rakhmanov theorem holds true.
Host: Clark
Approximation Algorithms for Big Data
Dongbin Xiu
Professor and Ohio Eminent Scholar
Department of Mathematics
The Ohio State University
Thursday, May 4, 2017
4:00-5:15 PM
Toomey Hall 295
One of the central tasks in scientific computing is to accurately approximate unknown target functions. This is typically done with the help of data — samples of the unknown functions. In statistics this falls into the realm of regression and machine learning. In mathematics, it is the central theme of approximation theory. The emergence of Big Data presents both opportunities and challenges. On one hand, big data introduces more information about the unknowns and, in principle, allows us to create more accurate models. On the other hand, data storage and processing become highly challenging. Moreover, data often contain certain corruption errors, in addition to the standard noisy errors. In this talk, we present some new developments regarding certain aspects of big data approximation. More specifically, we present numerical algorithms that address two issues: (1) how to automatically eliminate corruption/biased errors in data; and (2) how to create accurate approximation models in very high dimensional spaces using stream/live data, without the need to store the entire data set. We present both the numerical algorithms, which are easy to implement, as well as rigorous analysis for their theoretical foundation.
Dongbin Xiu received his Ph.D degree from the Division of Applied Mathematics of Brown University in 2004. He conducted postdoctoral studies in Los Alamos National Laboratory, Princeton University, and Brown University, before joining the Department of Mathematics of Purdue University as an Assistant Professor in the fall of 2005. He was promoted to the rank of Associate Professor in 2009 and to Full Professor in 2012. In 2013, he moved to the University of Utah as a Professor in the Department of Mathematics and Scientific Computing and Imaging (SCI) Institute. In 2016, He moved to Ohio State University as Professor of Mathematics and Ohio Eminent Scholar. He has received NSF CAREER award in 2007, as well as a couple of teaching awards at Purdue. He is on the editorial board of several journals, including SIAM Journal on Scientific Computing and Journal of Computational Physics. He is the founding Associate Editor-in-Chief of the International Journal for Uncertainty Quantification. His research focuses on developing efficient numerical algorithms for stochastic computations and uncertainty quantification.
Host: He
On the Rate of Convergence for Online Principal Component Estimation and Tensor Decomposition
Junchi Li
Postdoctoral Reseach Associate
Department of Operations Research and Financial Engineering
Princeton University
Friday, April 21, 2017
4:00-5:15 PM
Rolla Building G5
Principal component analysis (PCA) and tensor component analysis has been a prominent tool for high-dimensional data analysis. Online algorithms that estimate the component by processing streaming data are of tremendous practical and theoretical interests. In this talk, we cast these methods into stochastic nonconvex optimization problems, and we analyze the online algorithms as a stochastic approximation iteration. We will sketch the proof (for the first time) a nearly optimal convergence rate result for both online PCA algorithm and online tensor decomposition. We show that the finite-sample error closely matches the corresponding results of minimax information lower bound.
Dr. Junchi Li obtained his B.S. in Mathematics and Applied Mathematics at Peking University in 2009, and his PhD in Mathematics at Duke University under Professor Rick Durrett in 2014. He is currently working as a postdoctoral research associate at Department of Operations Research and Financial Engineering, Princeton University, with Professor Han Liu and Professor Tong Zhang. His research interests include statistical machine learning and optimization, stochastic algorithms for big data analytics, and stochastic dynamics on graphs and complex networks.
Host: Hu
Representation Theorems for Indefinite Quadratic Forms and Applications
Stephan Schmitz
Postdoctoral Fellow
Department of Mathematics
University of Missouri-Columbia
Monday, April 17, 2017
4:00-5:15 PM
Rolla Building G5
We will discuss the connection between quadratic forms and operators. The main question is whether a symmetric sesquilinear form defines a self-adjoint operator and, if yes, whether knowing the operator allows to reconstruct the form again. For bounded or semibounded closed forms, classic results give an affirmative answer to these questions. In this talk, we address these questions for (possibly) non-semibounded forms. As an application, the Stokes block operator and indefinite differential operators of the type $\mathrm{div} H$grad in $L^2(\Omega)$, where $H$ is sign indefinite and $\Omega$ is a bounded domain in $\mathbb{R}^n$, will be discussed.
This talk is based on joint work with A. Hussein, V. Kostrykin, D. Krej¿i¿ík, K. A. Makarov, and K. Veseli¿.
Stephan Schmitz earned his PhD in from the University of Mainz, Germany, in Spring 2014 under the supervision of Vadim Kostrykin. Since Fall 2015 he has been a Postdoctoral Fellow at MU Columbia. Dr. Schmitz's main research interest lie in the areas of Functional Analysis and Partial Differential Equations with primary focus on indefinite quadratic forms, diagonalization of operator matrices and their applications in Mathematical Physics.
Host: Clark
Generalized Semiparametric Varying-Coefficient Model for Longitudinal Data with Applications to Adaptive Treatment Randomizations
Yanqing Sun
Professor
Department of Mathematics and Statistics
University of North Carolina at Charlotte
Friday, April 14, 2017
4:00-5:15 PM
Rolla Building G5
This paper investigates a generalized semiparametric varying-coefficient model for longitudinal data that can flexibly model three types of covariate effects: time-constant effects, time-varying effects, and covariate-varying effects. Different link functions can be selected to provide a rich family of models for longitudinal data. The model assumes that the time-varying effects are unspecified functions of time and the covariate-varying effects are parametric functions of an exposure variable specified up to a finite number of unknown parameters. The estimation procedure is developed using local linear smoothing and profile weighted least squares estimation techniques. Hypothesis testing procedures are developed to test the parametric functions of the covariate-varying effects. The asymptotic distributions of the proposed estimators are established. A working formula for bandwidth selection is discussed and examined through simulations. Our simulation study shows that the proposed methods have satisfactory finite sample performance. The proposed methods are appliedto the ACTG 244 clinical trial of HIV infected patients being treated with Zidovudine to examine the effects of antiretroviral treatment switching before and after HIV develops the T215Y/F drug resistance mutation. Our analysis shows benefits of treatment switching to the combination therapies as compared to continuing with ZDV monotherapy before and after developing the 215-mutation.
This is a joint work with Li Qi, Biostatistics and Programming, Sanofi and Peter B. Gilbert, Fred Hutchinson Cancer Research Center.
Yanqing Sun received her Ph.D degree from Florida State University in 1992. She is a Full Professor of Statistics at the University of North Carolina at Charlotte. She is an Elected fellow of American Statistical Association and Elected member of International Statistical Institute. Her research interest includes developing semiparametric and nonparametric methods for univariate and multivariate failure time data, competing risks data, longitudinal data, and missing data. She has published 59 professional articles.Dr. Sun has been continuously funded by NSF for 15 years and by NIH for 10 years. She was appointed on the Statistics Panel of the NSF Division of Mathematical Sciences for statistics grant applications in 2013 and 2016. She served as an associate editor for International Journal of Biostatistics. Dr. Sun has supervised eight Ph.D graduates and is currently supervising six Ph.D graduate students.
Host: Adekpedjou
Regularity of Solutions to the 3D Navier-Stokes Equations
Zachary Bradshaw
Visiting Scholar, Department of Mathematics
University of Virginia
Friday, February 10, 2017
4:00-5:15 PM
Rolla G-5
In 1934, Jean Leray gave the first construction of a solution to the Navier-Stokes equations. 83 years later, the regularity, i.e.~smoothness and boundedness, of Leray's solutions remains an open question. Presently, only conditional regularity criteria are available. In this talk, we introduce the Ladyzhenskaya-Prodi-Serrin regularity criteria, a classical conditional regularity criteria for Leray's weak solutions to the Navier-Stokes equations. In our discussion, special attention is paid the roles of critical versus supercritical norms in regularity issues, and how these relate to the difficulty of solving the problem of global regularity for the Navier-Stokes equations (which is one of the Millennium prizes). We also present a recent refinement of the Ladyzhenskaya-Prodi-Serrin criteria highlighting which frequencies play an essential role in singularity formation.
Dr. Zachary Bradshaw graduated from the University of Virginia in 2014. From July 2014 to July 2016, he was a postdoctoral research fellow at the University of British Columbia. He is currently a visiting scholar at the University of Virginia. His research is in PDEs, particularly the analysis of fluid models such as the Navier-Stokes equations. Major topics in his work are turbulence and regularity.
On Contraction of Large Perturbations of Shock Waves
Moon-Jin Kang
R. H. Bing Instructor, Department of Mathematics
The University of Texas at Austin
Monday, February 6, 2017
4:00-5:15 PM
Rolla G-5
Although mathematical understanding on hyperbolic conservation laws has made huge contributions across many fields of science, there remain many important unsolved questions. In particular, a global well-posedness of entropy solutions to the system of conservation laws in a class of large initial datas is completely open even in one space dimension. Recently, we have obtained a contraction (up to shift) of entropy shock waves to the hyperbolic systems in a class of large perturbations satisfying strong trace property. Moreover, concerning viscous systems, we have verified the contraction of large perturbations of viscous shock waves to the isentropic Navier-Stokes system with degenerate viscosity. Since the contraction of viscous shocks is uniformly in time and independent of viscosity coefficient, based on inviscid limit, we have the contraction (thus, uniqueness) of entropy shocks to the isentropic Euler in a class of large perturbation without any local regularity such as strong trace property. In this talk, I will present this kind of contraction property for entropy inviscid shocks and viscous shocks.
Dr. Kang received his Ph.D. from the Department of Mathematical Science, Seoul National University, Korea in 2013, under the supervision of professor Seung-Yeal Ha. From August 2013 to July 2014, he was a visiting scholar at the Univ. Texas at Austin. He is currently R.H. Bing Instructor at the same university. During Spring semester 2015, he visited LJLL(Laboratoire Jacques-Louis Lions), Paris as a FSMP postdoctoral fellow. Dr. Kang's research interests lie in (partial) differential equations arising in the fluid dynamics, engineering, neuroscience, biology and social dynamics, etc.
Diffusive Stability of Spatially Periodic Patterns
Alim Sukhtayev
Visiting Assistant Professor, Department of Mathematics
Indiana University
Friday, February 3, 2017
4:00-5:15 PM
Rolla G-5
The topic of pattern formation has been the object of considerable attention since the fundamental observation of Alan Turing that reaction diffusion systems modeling biological/chemical processes can spontaneously develop patterns through destabilization of the homogeneous state. Going beyond the question of existence, an equally fundamental topic is stability of periodic patterns, and linear and nonlinear behavior under perturbation. Here, two particular landmarks are the formal small-amplitude theory of Eckhaus and the rigorous linear and nonlinear verification of this theory for the Swift-Hohenberg equation, a canonical model for hydrodynamic pattern formation. In this talk, I will present a rigorous small-amplitude stability analysis of Turing patterns for the canonical second-order system of reaction diffusion equations given by the Brusselator model, and for the model introduced by Cox-Matthews for pattern formation with a conservation law.
Dr. Sukhtayev received his Ph.D. from the University of Missouri, Columbia in 2012, under the supervision of professor Yuri Latushkin. From July 2012 to July 2015, he was a visiting assistant professor at Texas A&M University. He is currently a visiting assistant professor at Indiana University Bloomington. Dr Sukhtayev's research interests lie in Applied Analysis, Partial Differential Equations and infinite dimensional Dynamical Systems with emphasis on problems related to stability theory and operator theory.
On Two-Phase Flow in Karstic Geometry: Modeling, Analysis and Numerical Simulations
Daozhi Han
Zorn Postdoctoral Fellow, Department of Mathematics
Indiana University
Monday, January 30, 2017
4:00-5:15 PM
Rolla G-5
Multiphase flow phenomena are ubiquitous. In some applications such as flows in unconfined karst aquifers, karst oil reservoir, proton membrane exchange fuel cell, multiphase flows in conduits, and in porous media must be considered together. Geometric configurations that contain both conduit and porous media are termed karstic geometry. In this talk, we derive a diffuse interface model for two-phase flow in karstic geometry utilizing Onsager's extremum principle. The model together with the interface boundary conditions satisfies a physically important energy law. We show that the model admits a global finite-energy weak solution which agrees with the strong solution provided the strong solution exists. Finally, we present a novel decoupled unconditionally energy-stable numerical scheme for solving this diffuse interface model.
Dr. Han obtained his PhD in Applied and Computational Mathematics from the Florida State University in 2015, under the supervision of Prof. Xiaoming Wang. He then joins the Department of Mathematics at Indiana University as a Zorn postdoctoral fellow working with Prof. Roger Temam. Dr. Han's research is centered around applied analysis, numerical analysis and computation of partial differential equations from fluid dynamics. Dr. Han is currently working on the mathematical validity of Prandtl boundary layer theory; modeling, analysis and numerical simulations of multiphase flow phenomena; and flow instabilities.
A Multiscale Approach for Seafloor Identification in Sonar Imagery
Christina Frederick
NSF IMPACT Postdoctoral Fellow, School of Mathematics
Georgia Institute of Technology
Friday, January 27, 2017
4:00-5:15 PM
Rolla G-5
Modern day sonar systems are capable of probing the ocean floor and obtaining acoustic measurements with an unprecedented level of precision. Despite rapid advances in technology, only about .05% of the oceans are mapped to a resolution of a couple meters, needed for tasks such as finding plane wreckage. The main obstacle to rapid seafloor characterization is dealing with the complex scattering effects of structures on the ocean floor. In this talk, I'll describe a multiscale strategy for solving the inverse problem of recovering details of the ocean floor using sonar data. Forward solvers incorporate simulations of Helmholtz equations on a wide range of spatial scales, allowing for detailed recovery of seafloor parameters including the material type and roughness. In order to lower the computational cost of large-scale simulations, we take advantage of a library of representative acoustic responses from various seafloor configurations. The inversion is performed using efficient discrete optimization techniques.
Dr. Frederick earned her Ph.D. in mathematics from the University of Texas at Austin in 2014 under the supervision of Björn Engquist. She has held a postdoctoral fellowship at the Mittag-Leffler Institute of the Royal Swedish Academy of Sciences in Stockholm (2014), and from 2015 until the present time, has been an NSF IMPACT postdoctoral fellow in the School Mathematics at the Georgia Institute of Technology and mentored by Haomin Zhao. Dr. Fredrick's research has focused on multiscale methods, a very active branch of computational and applied mathematics due to developments in computing technology and information science. Her work has encompassed multiscale computation and numerical homogenization for inverse problems based on elliptic PDE's that has application in porous media and medical imaging, as well as sampling strategies that exploit special microstructures of functions to reduce the computation cost, and retain theoretical optimality in terms of efficiency and stability. Recent work includes multiscale methods for sonar imaging, as well as robotics and stochastic differential equations.
From Buckling to Rigidity of Shells: Recent Mathematical Progress
Davit Harutyunyan
Postdoctoral Associate, Department of Mathematics
Swiss Federal Institute of Technology, Lausanne (EPFL)
Monday, January 23, 2017
4:00-5:15 PM
Rolla G-5
It is known that the rigidity of a shell (for instance under compression) is closely related to the optimal Korn's constant in the nonlinear Korn's first inequality (geometric rigidity estimate) for $H^1$ fields under the appropriate conditions (with no or with Dirichlet type boundary conditions arising from the nature of the compression). In their celebrated work, Frisecke, James and Mueller (2002, 2006) derived an asymptotically sharp nonlinear geometric rigidity estimate for plates, which gave rise to a derivation of a hierarchy of nonlinear plate theories for different scaling regimes of the elastic energy depending on the thickness $h$ of the plate (the optimal constant scales like $h^2$). Frisecke-James-Mueller type theories have been derived by Gamma-convergence and rely on $L^p$ compactness arguments and of course the underlying nonlinear Korn's inequality. While plate deformations have been understood almost completely, the rigidity, in particular the buckling of shells is less well understood. This is first of all due to the luck of sharp rigidity estimates for shells. In our recent work we derive linear sharp geometric estimates for shells by classifying them according to the Gaussian curvature. It turns out, that for zero Gaussian curvature (when one principal curvature is zero, the other one never vanishes) the amount of rigidity is $h^{3/2},$ for negative curvature it is $h^{4/3}$ and for positive curvature it is $h$. These results represent a breakthrough in both the shell buckling and nonlinear shell theories. All three estimates have completely new optimal constant scaling for any sharp geometric rigidity estimates to have appeared, and have a classical flavor. This is partially joint work with Yury Grabovsky (Temple University)
Dr. Harutyunyan graduated from the Hausdorff Center for Mathematics (University of Bonn) in June, 2012, where he did his doctoral work in applied analysis under the supervision of prof. Stefan Mueller. He spent 2 years at Temple University (2011-2013) as a postdoctoral research assistant professor working with prof. Yury Grabovsky and 3 years at the University of Utah (2013-2016) as a research assistant professor working with distinguished prof. Graeme Walter Milton. He is now a scientific collaborator at Ecole Polytechnique Federale de Lausanne working with prof. Hoai-Minh Nguyen. Dr. Harutyunyan is working in various directions of analysis (both applied and pure) with broad research interests such as Partial Differential Equations, Calculus of Variations, Material Science, Composite Materials and Metamaterials, Continuum Mechanics, Homogenization, Stability Estimates and Micromagnetics.
Long-time Behavior for Nonlinear Schrödinger Equations
Jason Murphy
NSF Postdoctoral Fellow, Department of Mathematics
University of California-Berkeley
Friday, January 20, 2017
4:00-5:15 PM
Rolla G-5
We will discuss several results concerning the long-time behavior of solutions to nonlinear Schrödinger equations (NLS). The study of two special cases (the mass- and energy-critical problems) over the last 15-20 years led to the development of a powerful set of techniques, namely, the concentration compactness approach to induction on energy. These techniques have been further developed and refined to address a wide range of problems in the field of nonlinear dispersive equations. I will first discuss some results for pure power-type NLS at `non-conserved critical regularity'. I will also discuss some results for other models, including NLS in the presence of an external potential, as well as NLS with non-vanishing boundary conditions at spatial infinity.
Dr. Murphy earned his PhD in Mathematics from UCLA in Spring 2014 under the supervision of Rowan Killip and Monica Visan. Since Fall 2014, he has been an NSF Postdoctoral Fellow at UC Berkeley with sponsoring scientist Daniel Tataru. Dr. Murphy's main research interests lie in the areas of harmonic analysis and nonlinear dispersive equations, with a primary focus on the asymptotic behavior of solutions to nonlinear Schrödinger equations.
Accurate and Efficient Computation of Nonlocal Potentials Based on Gaussian-sum Approximation
Yong Zhang
Visiting Fellow, Courant Institute of Mathematical Sciences
New York University
Wednesday, November 16, 2016
4:00-5:15 PM
Rolla G-5
We introduce an accurate and efficient method for the numerical evaluation of nonlocal potentials, including the 3D/2D Coulomb, 2D Poisson and 3D dipole-dipole potentials. Our method is based on a Gaussian-sum approximation of the singular convolution kernel combined with a Taylor expansion of the density. Starting from the convolution formulation of the nonlocal potential, for smooth and fast decaying densities, we make a full use of the Fourier pseudospectral (plane wave) approximation of the density and a separable Gaussian-sum approximation of the kernel in an interval where the singularity (the origin) is excluded. The potential is separated into a regular integral and a near-field singular correction integral. The first is computed with the Fourier pseudospectral method, while the latter is well resolved utilizing a low-order Taylor expansion of the density. Both parts are accelerated by fast Fourier transforms (FFT). The method is accurate (14-16 digits), efficient ($O(N\log N)$ complexity), low in storage, easily adaptable to other different kernels, applicable for anisotropic densities and highly parallelizable.
Dr. Zhang graduated from the Department of Mathematical Science, Tsinghua University, in 2012. From July 2012 to July 2015, he was a post doctoral fellow at the Wolfgang Pauli Institute, University of Vienna. From Sep 2015 till July 2016, he worked at IRMAR, University of Rennes 1 in France. Supported by an Erwin Schrödinger grant from the Austrian Science Fund (FWF) awarded last June, he is now visiting with Professor L. Greengard at the Courant Institute, New York University. Dr Zhang is a specialist in applied and computational mathematics whose research interests include: Bose-Einstein Condensates, analysis-based fast algorithms, artificial boundary conditions, and highly oscillatory problems.
Host: Zhang
(Conditional) Positive Semidefiniteness in a Matrix-Valued Context
Michael Pang
Professor, Department of Mathematics
University of Missouri
Friday, October 28, 2016
4:00-5:15 PM
Rolla G-5
We extend Schoenberg's classical theorem, which relates conditionally positive semidefinite functions $F \colon \mathbb{R}^n \to \mathbb{C}$ to their positive semidefinite exponentials $\exp(tF) \colon \mathbb{R}^n \to \mathbb{C}, \,\, t > 0,$ to matrix-valued conditionally positive semidefinite functions $F\colon \mathbb{R}^n \to \mathbb{C}^{m \times m}, \,\, m \in \mathbb{N}.$ Moreover, we study the closely related property that $\exp(tF)(-i\nabla),\,\, t > 0,$ is positivity preserving and its failure to extend directly to the matrix-valued context. If time permits, we will discuss some of the main tools used in the proofs.
This is joint work with Fritz Gesztesy.
Dr. Pang's research focuses on spectral properties of linear second order elliptic operators. These include heat kernel bounds, Lp properties of singular elliptic operators, eigenfunctions of the Dirichlet Laplacians defined on regions with fractal boundaries, elliptic operators defined on graphs, and the hot spots conjecture. Most recently he has been interested in problems related to perturbations of eigenspaces of Dirichlet Laplacians caused by perturbations of the regions.
Host: Clark
Suppression of Chemotactic Explosion by Mixing
Xiaoqian Xu
Postdoctoral Associate, Department of Mathematics
Carnegie Mellon University
Friday, October 21, 2016
4:00-5:15 PM
Rolla G-5
The Keller-Segel equation is one of the most studied PDE models of processes involving chemical attraction. However, a solution of the Keller-Segel equation can exhibit dramatic collapsing behavior where the population density of bacteria concentrates positive mass in a measure zero region. In other words, there exist initial data leading to finite time blow up. In this talk, we will discuss the possible effects resulting from interaction of chemotactic and fluid transport processes; namely, we will consider the Keller-Segel equation with additional advection term modeling ambient fluid flow. We will prove that the presence of fluid can prevent the singularity formation. We will discuss two classes of flows that have the explosion arresting property. Both classes are known as very efficient mixers.
Dr. Xu is currently a postdoctoral associate in the Mathematics Department of Carnegie Mellon University. Before joining CMU, he finished a PhD in Mathematics in 2016 at the University of Wisconsin-Madison under the direction of Professors Alexander Kiselev and Andrej Zlatos. Dr. Xu works in the area of partial differential equations with a focus on fluid dynamics, active scalar and mixing.
Host: Hu
Padé Approximants and Difference Operators
Maksym Derevyagin
Visiting Assistant Professor, Department of Mathematics
University of Mississippi
Thursday, October 20, 2016
4:00-5:15 PM
Rolla G-5
We will discuss Padé approximants, which serve as a very efficient tool for numerical analysis of objects that are described by analytic or even meromorphic functions. Actually, it will be shown how one can use operator theory to prove convergence results for this kind of approximation. In a word, Padé approximants arise as approximants to continued fractions of a special type and, in turn, continued fractions are intimately related to difference equations of the second order, which in fact give us the difference operators in question.
In order to demonstrate the method, several instances when it can be applied will be analyzed and, thus, a couple of convergence results will be presented. Also, we will consider what kind of obstacles may appear while applying the scheme.
Dr. Derevyagin has been a Visiting Assistant Professor in the University of Mississippi Department of Mathematics since 2014. Before that, he has held post-doctoral positions in the Katholieke Universiteit Leuven, the Technische Universität Berlin, and Université Lille 1 : Sciences et Technologies. His research interests include operator theory, in particular, the spectral theory of differential and difference operators, approximation theory and special functions, orthogonal polynomials and random matrix theory
Host: Clark