Norms on Categories and Generalized Schröder-Bernstein Theorems

Daniel Luckhardt

Ben-Gurion University of the Negev

joint with Matt Insall, Rolla St T

Rolla, MO, February 5, 2020

Metrizations

Motivation

- * Geometric sturcture on collection of objects
- * quantitative statements
- * fixed point theorems

* etc

Easy example

Define the Haysdorff distance $d_H(A, B)$ of closed subsets A, B of a metric space $\mathcal{M} = (M, d_{\mathcal{M}})$ as $\inf\{\varepsilon > 0 \mid A^{\varepsilon} \subset B \text{ and } B^{\varepsilon} \subset A\}$ where A^{ε} is the ε -thickening $A^{\varepsilon} := \{x \in M \mid \exists y \in A : |xy| \le \varepsilon\}.$

More complicated ones Gromov-Hausdorff distance den(M.N) of two (isometry classes of) metric spaces $\mathcal{M} = (M, d_{\mathcal{M}}), \mathcal{N} = (N, d_{\mathcal{N}})$ inf $d_{\mathbf{H}}(\varphi_{\mathbf{I}}(M), \psi_{\mathbf{I}}(N))$ $\mathcal{M} \xrightarrow{\varphi} \mathcal{L} \xleftarrow{\psi} \mathcal{N}$ where φ, ψ are embeddings and $f_1: \mathcal{P}(X) \to \mathcal{P}(Y)$ image map for $f: X \to Y$. Pointed Gromov-Hausdorff distance Between $(M, d_{\mathcal{M}}, p)$ and $(N, d_{\mathcal{N}}, q)$ $\sum \inf d_{\mathsf{GH}}(\mathrm{B}[p,r],\mathrm{B}[q,s])$ $\sum_{n=1}^{L} r, s \ge n$ where B[p, r] is the closed r-Ball around p. Put measure on top ~> pointed metric measure space

Clear it works, But

- * technical details matter,
- * axioms & Basic properties hard to check,
- * different ways
- * including arbitrary choices.

Idea

Aim

Easy and systematic metrizations.

First Observation

Recall: $d_H(A, B) =$ $\inf\{\varepsilon > 0 \mid A^{\varepsilon} \subset B, B^{\varepsilon} \subset A\}.$ Symmetrized! Things get easier when dropping the symmetry requirement \rightarrow quasimetric

Second observation

Nicest metrics are induced by norms. Recall Axions of $\|.\|$: structure (i) $\|.\|$: vector space $\rightarrow [0, \infty)$, (ii) $\|\underline{\lambda} v\| = \lambda \|v\|$, (iii) triangle inequality $\|v + w\| \le \|v\| + \|w\|$ is define (iv) $\|v\| = 0 \Leftrightarrow v = 0$ more complicated

The priordial example Sets and functions. (i) $\|.\|$: (functions, composition) $\rightarrow [0, \infty]$, $||f||_{\mathsf{set}} \coloneqq \log \sup^1 \# f^*(\{y\}),$ $v \in \mathcal{V}$ where $f^*: \mathcal{P}(Y) \to \mathcal{P}(X)$ preimage, $\sup^{a} f(x) := \{a\} \cup \{f(x) \mid x \in X\}.$ $x \in X$ (iii) for $X \xrightarrow{f} Y \xrightarrow{g} Z$: $\|g \circ f\|_{set}$ $= \log \sup^1 \# f^* g^*(\{z\})$ $\leq \log \sup_{z \in Z} \left(\sup_{y \in Y} \#f^*(\{y\}) \cdot \#g^*(\{z\}) \right)$ $= ||f||_{set} + ||g||_{set},$ (iv) Observe $||f||_{\text{Set}} = 0 \iff f$ is injective. schröder-Bernstein theorem: given $f: X \to Y$ and $g: Y \to X$, we have 18 defined $||f||_{Set} = ||g||_{Set} = 0$ $\implies \exists$ bijection $X \rightarrow Y$

Brief introduction to category theory

Observation

In a mathematical theory one often deals with a specific class of objects and maps between them, e.g.

- * sets ≠ functions,
- * topological spaces \$ continuous Maps,
- * groups \$ group homomorphisms,
- * normed vector spaces \$ Bounded linear maps,

* etc.

Definition

A category $\underline{C} = (\underline{C}_0, \underline{C}_1, ;, id)$ comprises

- * \underline{C}_0 class of objects,
- * \underline{C}_1 class of morphisms,

★ source:
$$\underline{C}_1 \rightarrow \underline{C}_0$$
, target: $\underline{C}_1 \rightarrow \underline{C}_0$,

* composition: $(\overline{f,g}) \mapsto \overline{f}; g$ defined if target $\overline{f} = \text{source } g$, (notation $f: X \to Y$ iff X =source f and Y = target f),

★
$$X \mapsto \operatorname{id}_X$$
 for $X \in \underline{C}_0$.

such that

- * source(f;g) = sourcef, target(f;g) = targetg;
- $\bigstar \operatorname{id}_X : X \to X;$

*
$$\operatorname{id}_X$$
; $f = f$ and g ; $\operatorname{id}_X = g$;

Notation $\underline{C}[X, Y] := \{f \mid f: X \to Y\}$ Notation Set, Top, Gr, NVect, etc. Notation $g \circ f := f; g$. In Set we have $(g \circ f)(x) = (f; g)(x) = g(f(x))$. $f: X \to Y$ is an isomorphism $\iff f$ is invertible, i.e. $\exists (g: Y \to X):$ $\operatorname{id}_X = f; g$ and $\operatorname{id}_X = g; f$

Examples

- <u>C</u>₀ is a singleton: monoid.
 If additionally every morphism is an isomorphism: group.
- * $\underline{C}[X, Y]$ is empty or a singleton for every $X, Y \in \underline{C}_0$: preorder.

The Axioms

Definition: seminorm A seminorm on a category <u>C</u> is a map $\|.\|: \underline{C}_1 \to [0, \infty]$ such that (ND) $\|\text{id}_X\| = 0$ for all $X \in \underline{C}_0$; (N2) $\|f; g\| \leq \|f\| + \|g\|$ (triangle inequality).

Definition: norm

A seminorm such that for all $X, Y \in \underline{C}_0$

(N3) if there are maps
$$f: X \to Y$$

and $g: Y \to X$ with $||f|| =$
 $||g|| = 0$, then there is an
isomorphism $X \to Y$;

(N4) if for all $\varepsilon > 0$ there is $f: X \to Y$ with $||f|| \le \varepsilon$, then there is $f: X \to Y$ with ||f|| = 0. Back to priordial example For (Set, $\|.\|_{Set}$), remember $\|f\|_{set} = \log \sup_{y \in Y} \#f^*(\{y\}),$ axioms (NI-3) are already checked. (NH) follows from the fact that $\|.\|_{Set}$ is discretely valued.

Metrization

Let $(\underline{C}, \|.\|)$ be a seminormed category.Let $sk_0(\underline{C}, \|.\|)$ denote the set of isomorphism classes of objects in \underline{C} .

Define the quasipseudometric $d_{\|,\|}(\hat{X}, \hat{Y}) := \inf\{ \|f\| \mid f : X \to Y \}$ where $X \in \hat{X}$ and $Y \in \hat{Y}$.

By some symmetrization, e.g. $d_{\|\cdot\|}^{\vee}(X,Y) := d_{\|\cdot\|}(X,Y) \lor d_{\|\cdot\|}(Y,X) \quad \text{or}$ $d_{\|\cdot\|}^{+}(X,Y) := \frac{1}{2} \left(d_{\|\cdot\|}(X,Y) + d_{\|\cdot\|}(Y,X) \right)$ we obtain a pseudometric Imposing axiom (N3), this pseudometric Becomes a metric.

Examples

Let Graph denote the category with OBjects Graphs (V, E), where $V = \{vertices\}$ and $E = \{(undirected) edges\}.$ MORPHISMS $(V, E) \rightarrow (V', E')$ function $f: V \rightarrow V'$ such that $(v, w) \in E \implies (f(v), f(w)) \in E'.$

 $(Graph, ||.||_{Set})$ is seminormed but not normed, e.g.

But restricting Graph to finite graphs $\|.\|_{Set}$ becomes a norm: If V, V' have same cardinality, every injection between them is a Bijection Hence $f_1: (v, w) \mapsto (f(v), f(w) \text{ is an}$ injection $E \to E'$. So is $g_1: (v, w) \mapsto (g(v), g(w)$. Thus f_1 is a Bijection

In non-discrete examples the role of finiteness will be played by compactness. Let <u>NVect</u>^{*} denote the category of normed vector spaces over the reals and linear maps.

 $\|A\|_{\mathsf{op}} \coloneqq \log \sup_{v \in V} \frac{\|v\|_V}{\|Av\|_W}$

If ||A|| = 0, then A is called **expansive**. $||A||_{op}$ is not a norm on <u>Nvect</u>. But on ^{Hilb}<u>Nvect</u>, the subcategory of Banach spaces that admit an inner product, i.e. a Hilbert space structure. This is because two Hilbert spaces are isomorphic iff they have the same Hilbert space dimension.

Question

Is there a connection to the more intuitive seminorm $\log \sup_{v \in V} \frac{\|Av\|_W}{\|v\|_V}$

The left dual seminarm of $\|.\|$ $\|f\|^{*L} := \sup_{f'} 0(\|f'\| - \|f'; f\|)$ where $X \xrightarrow{f'} Y \xrightarrow{f} Y'$.

Precapacities

Definition: functor

Functors are the structure preserving morphisms between categories, i.e. $F: \underline{C} \to \underline{D}$ consists of two functions $F_0: \underline{C}_0 \to \underline{D}_0, F_1: \underline{C}_1 \to \underline{D}_1$ that are compatible with ;, source, and

target, i.e.

 $\rightsquigarrow \underline{Cat} = (\{categories\}, \{functors\}).$

Concrete category

A concrete category is a faithful functor $F: \underline{C} \rightarrow \underline{Set}$. A functor is faithful if F_1 is injective on $\underline{C}[X, Y]$.

Subobjects

 $\begin{array}{l} X \xrightarrow{t} Y \text{ is monomorphism if } \forall h_1, h_2 \colon X' \to X \\ h_1 \; ; \; f = h_2 \; ; \; f \implies h_1 = h_2. \end{array}$

A <u>subplect</u> of X is an equivalence class of monomorphisms into X. They form a partially ordered class $(\operatorname{Sub}(X), \subseteq)$:

By a concrete category with subobjects (\underline{C}, F, SO) we understand a concrete category (\underline{C}, F) additionally endowed with a selection function $SO: X \mapsto SO(X)$,

where $X \in \underline{C}_0$, $SO(X) \subseteq Sub(X)$, such that preimages of subobjects in SO(Y) are well-defined, i.e. for all $f: X \to Y$ and $C \in SO(Y) \exists !$ maximal $B \in SO(Y)$ with $|B| = (Ff)^*(|C|)$ where $|C| := (FC)(source C) \subseteq F(X)$. Write $f^*C := B$.

Precapacity

A precapacity c on (\underline{C}, F, SO) is a $\{C \in SO(X) \mid X \in \underline{C}_0\} \xrightarrow{c} [0, \infty]$ that is monotone, i.e. for any $B, C \in SO(X): B \subseteq C \implies$ $c(source B) \leq c(source C).$ $\|f\|_c := \sup_{\substack{C \in SO(Y), \\ c(C) < \infty}} c(f^*C) - c(C)$ defines a seminorm $\begin{array}{l} \textbf{TOPOIOGICALSPACES}\\ \text{Let } \mathcal{X} = (X, \tau_{\mathcal{X}}) \text{ denote a top. space. Define the fiber differsion setting of }\\ \|f\|_{\text{f dim}} \coloneqq \|f\|_{|\log(1+\dim)|} = \sup_{\substack{A \in \mathcal{P}(Y) \\ \dim A < \infty}} \log(1 + \dim f^*A)| - |\log(1 + \dim A)|. \\ \text{Define } I(\mathcal{X}) \coloneqq \{\text{connected components}\} \text{ and the disconnectedness setting }\\ \|f\|_{\text{disconn}} \coloneqq \|f\|_{|\log \# I|} = \sup^0 \{\log(\#(1f^*C))| - \log(\#(1C)) \mid \int_{0 \leq \#(1C) \leq \infty}^{C \subset Y \text{ closed}} \}. \end{array}$

Fiber-wise characterization By so-called Hurewicz formula $||f||_{f \dim} = \sup |\log(1 + \dim(f^*y))|$ $v \in Y$ for a map $f: (T_4$ -space) \rightarrow (metrizable space). For $||f||_{disconn}$ we have in General $||f||_{disconn} = \sup^0 |\log(\#(I(f^*C)))|$ $C \neq \emptyset$ closed. # I(C) = 1and, if \mathcal{Y} is a T_1 , $||f||_{disconn} \ge \sup^0 |\log(\#(|f^*\{p\})|)|$ $p \in Y$

Characterization of ||.|| = 0f: $\mathcal{X} \to \mathcal{Y}$ is light if the fiber $f^*\{y\}$ is totally dis-

connected for every $y \in Y$, i.e. when dim $f^*\{y\} = 0$,

(monotone if the preimage of every $\{y\} \subset \mathcal{Y}$ is nonempty and connected.

Schröder-Bernstein theorem $\|f\|_{top} := \|f\|_{disconn} + \|f\|_{f dim}$ Let \mathcal{X} be compact, T_4 and \mathcal{Y} be metrizable. Then $\|f\|_{top} = 0 \implies f$ is a homeomorphism.

Especially, on the category of compact metrizable spaces $\|.\|_{top}$ is a norm.

Metric spaces Met := ({metric spaces}, {functions}). dilatation seminorm $c(A) := \operatorname{diam}(A) = \sup^0 |x y|,$ $\|f\|_{\mathsf{dil}} \coloneqq \|f\|_c$ $= \sup^{0} (\operatorname{diam}(f^{*}A) - \operatorname{diam}(A))$ $A \subset N$ $= \sup^{0} (|x y| - |f(x) f(y)|)$ $x, y \in M$ measuring deviation from Being expansive diam $M = ||M \to T||_{dil}$, where $T = (\{\bullet\}, 0)$ is terminal object. Left dual $\|f\|_{dil}^{*L} = \sup_{x,y \in M} (|f(x)f(y)| - |xy|)$ deviation from being a contraction. When treating metric spaces in category theory, one normally

restricts attention to contractions, though in Metric space theory all kinds of Maps are considered. Let \underline{Met}_{cpt} be \underline{Met} restricted to compact spaces.

Gromov-Hausdorff distance $((\underline{Met}_{cpt})_0, d_{GH}) \rightarrow ((\underline{Met}_{cpt})_0, d_{di}^+)$ is +-Lipschitz with continuous inverse. $\|.\|_{dil}$ is a norm on \underline{Met}_{cpt} .

Lemma/(NH)

Let \mathcal{M} be a compact. For every $\varepsilon > 0$ there is a $\delta > 0$ such that for every $h: \mathcal{M} \to \mathcal{M}$ with $\|h\|_{\text{dil}} < \delta$ implies that

(i) h(M) is ε -dense, and (ii) $\|h\|_{\text{dil}}^{*L} \leq 4\varepsilon + C\delta$ where $C = C(\varepsilon, \mathcal{M})$.

Lipschitz seminorm $\|f\|_{\text{Lip}} \coloneqq \|f\|_{\log \text{diam}}$

 $= \sup_{x,y} \frac{|x y|_{\mathcal{M}}}{|f(x) f(y)|_{\mathcal{N}}}$

Further directions

metric measure spaces, limits, etc.