Norms on categories and ceneralized schröder-Bernstein Theorems

Daniel Luckhardt

Ben-Gurion University of the Negev
joint with Matt Insall, Rolla S $\frac{\underset{T}{T}}{} T$

Rolla, MO, February 5, 2020

Metrizations
Motivation

* geometric sturcture on collection of OBjects
* Quantitative statements
* fixed point theorems
* etc.

Easy example
Define the Hausdorff distance $\mathrm{d}_{\mathrm{H}}(A, B)$ of closed subsets A, B of a Metric space $\mathcal{M}=\left(M, d_{\mathcal{M}}\right)$ as $\inf \left\{\varepsilon>0 \mid A^{\varepsilon} \subset B\right.$ and $\left.B^{\varepsilon} \subset A\right\}$ where A^{ε} is the ε-thickening $A^{\varepsilon}:=\{x \in M|\exists y \in A:|x y| \leq \varepsilon\}$.

More complicated ones
cromov-hausdorff distance $\mathrm{d}_{\mathrm{GH}}(\mathcal{M}, \mathcal{N})$ of two (isometry classes of) metric spaces

$$
\begin{gathered}
\mathcal{M}=\left(M, d_{\mathcal{M}}\right), \mathcal{N}=\left(N, d_{\mathcal{N}}\right) \\
\quad \inf ^{\mathcal{M}} \mathrm{dH}_{\boldsymbol{H}}\left(\varphi_{!}(M), \psi_{!}(N)\right)
\end{gathered}
$$

where φ, ψ are emBeddings and $f_{!}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ image map for $f: X \rightarrow Y$.
Pointed oromov-Hausdorff distance
Between $\left(M, d_{\mathcal{M}}, p\right)$ and $\left(N, d_{\mathcal{N}}, q\right)$

$$
\sum_{n=1}^{\infty} \inf _{r, s \geq n} \mathrm{~d}_{\mathrm{GH}}(\mathrm{~B}[p, r], \mathrm{B}[q, s])
$$

where $\mathrm{B}[p, r]$ is the closed r-Ball around p.
Put measure on top
\rightsquigarrow pointed metric measure space
Clear it works, But

* technical details matter,
* axioms $\stackrel{\perp}{\boldsymbol{T}}$ Basic properties hard to check,
* different ways
* including arBitrary choices.

Idea

Aim
Easy and systematic metrizations.

First Observation
Recall: $\mathrm{d}_{\mathrm{H}}(A, B)=$ $\inf \left\{\varepsilon>0 \mid A^{\varepsilon} \subset B, B^{\varepsilon} \subset A\right\}$.
Symmetrized!
Things get easier when dropping the symmetry requirement \rightsquigarrow Quasimetric

Second observation
Nicest metrics are induced By norms.
Recall Axioms of $\|$.$\| :$
some algebraic structure
(i) $\|$.$\| : vector space \rightarrow[0, \infty)$,]
(ii) $\|\lambda \cdot v\|=\lambda\|v\|$,
(iii) triangle inequality
when $\|v+w\| \leq\|v\|+\|w\|\}^{4} v+w^{4}$
(iv) $\|v\|=0 \circlearrowleft v=0$ more complicated

The priordial example
Sets and functions.
(i) $\|\|:.($ functions, composition) $\rightarrow[0, \infty]$,

$$
\|f\|_{\text {set }}:=\log \sup _{y \in Y}^{1} \# f^{*}(\{y\})
$$

where

$$
\begin{aligned}
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X) \text { preimace, } \\
& \sup _{x \in X}^{a} f(x):=\{a\} \cup\{f(x) \mid x \in X\} .
\end{aligned}
$$

(iii) for $X \xrightarrow{f} Y \xrightarrow{g} Z$:
$\|g \circ f\|_{\text {set }}$

$$
\begin{aligned}
& =\log \sup _{z \in Z}^{1} \# f^{*} g^{*}(\{z\}) \\
& \leq \log \sup _{z \in Z}^{1}\left(\sup _{y \in Y}^{1} \# f^{*}(\{y\}) \cdot \# g^{*}(\{z\})\right) \\
& =\|f\|_{\text {set }}+\|g\|_{\text {set }},
\end{aligned}
$$

(iv) Observe $\|f\|_{\text {set }}=0 \Longleftrightarrow f$ is injective. schroder-Bernstein theorem: Given $f: X \rightarrow Y$ and $g: Y \rightarrow X$, we have $\|f\|_{\text {Set }}=\|g\|_{\text {Set }}=0$

$$
\Longrightarrow \exists \text { Bijection } X \rightarrow Y
$$

Brief introduction to category theory

Observation

In a mathematical theory one often deals with a specific class of OBjects and maps Between them, e.c.

* sets $\stackrel{1}{\boldsymbol{T}}$ functions,
* topolocical spaces $\stackrel{\rightharpoonup}{\top}$ continuous maps,
* Groups $\underset{\sim}{\frac{1}{T}}$ group homomorphisms,
* normed vector spaces \approx Bounded linear maps,
* etc.

Definition

A category $\underline{C}=\left(\underline{C}_{0}, \underline{C}_{1}, ;\right.$, id $)$ comprises

* C_{0} class of OBjects,
* \underline{C}_{1} class of morphisms,
* source: $\underline{C}_{1} \rightarrow \underline{C}_{0}, \quad$ target: $\underline{C}_{1} \rightarrow \underline{C}_{0}$,
* composition: $(f, g) \mapsto f ; g$ defined if target $f=$ source g, (notation $f: X \rightarrow Y$ iff $X=$ source f and $Y=\operatorname{target} f$),
such that

$$
\begin{aligned}
& \text { * } \operatorname{source}(f ; g)=\operatorname{source} f, \\
& \quad \operatorname{target}(f ; g)=\operatorname{target} g ; \\
& * \operatorname{id}_{X}: X \rightarrow X ; \\
& * \quad i d_{X} ; f=f \text { and } g ; \mathrm{id}_{X}=g \text {; } \\
& * \text {; is associative. }
\end{aligned}
$$

$$
\text { Notation } C[X, Y]:=\{f \mid f: X \rightarrow Y\}
$$

Notation Set, Top, Gr, NVect, etc.
Notation $g \circ f:=f ; g$. In Set we have $(g \circ f)(x)=(f ; g)(x)=g(f(x))$.
$f: X \rightarrow Y$ is an isomorphism $\Longleftrightarrow f$ is invertiBle, i.e. $\exists(g: Y \rightarrow X)$: $\mathrm{id}_{X}=f ; g$ and $\mathrm{id} X=g ; f$

Examples

* \underline{C}_{0} is a sincleton: monoid. If additionally every morphism is an isomorphism: group.
* $C[X, Y]$ is empty or a sinaleton for every $X, Y \in \underline{C}_{0}$: preorder.
* $X \mapsto \mathrm{id}_{X}$ for $X \in \underline{C}_{0}$.

The Axioms

Definition: seminorm

A seminorm on a category C is a map $\|\cdot\|: \underline{C}_{1} \rightarrow[0, \infty]$ such that $(\mathrm{N} \mid)\left\|\mathrm{id}_{X}\right\|=0$ for all $X \in \underline{C}_{0}$;

$$
\begin{gathered}
\text { (N2) }
\end{gathered}\|f ; g\| \leq\|f\|+\|g\|
$$

Definition: norm

A seminorm such that for all
$X, Y \in \underline{C}_{0}$
(N3) if there are maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ with $\|f\|=$ $\|g\|=0$, then there is an isomorphism $X \rightarrow Y$;
(N4) if for all $\varepsilon>0$ there is $f: X \rightarrow Y$ with $\|f\| \leq \varepsilon$, then there is $f: X \rightarrow Y$ with $\|f\|=0$.

Back to priordial example

For (Set, $\left.\|\cdot\|\right|_{\text {set }}$), remember

$$
\|f\|_{\text {set }}=\log \sup _{y \in Y}^{1} \# f^{*}(\{y\}),
$$

axioms ($\mathrm{N} \mid-3$) are already checked.
(N4) follows from the fact that $\|.\|_{\text {set }}$ is discretely valued.

Metrization

Let $(\underline{C},\|\|$.$) Be a seminormed category.Let$ $\operatorname{sk}_{0}(\underline{C},\|\|$.$) denote the set of isomorphism$ classes of Objects in C.
Define the quasipseudometric

$$
d_{\|\cdot\|}(\hat{X}, \hat{Y}):=\inf \{\|f\| \mid f: X \rightarrow Y\}
$$

where $X \in \hat{X}$ and $Y \in \hat{Y}$.
By some symmetrization, e.c.

$$
\begin{aligned}
& d_{\|\cdot\|}^{\vee}(X, Y):=d_{\|\cdot\|}(X, Y) \vee d_{\|\cdot\|}(Y, X) \text { or } \\
& d_{\|\cdot\|}^{+}(X, Y):=\frac{1}{2}\left(d_{\|\cdot\|}(X, Y)+d_{\|\cdot\|}(Y, X)\right)
\end{aligned}
$$

we OBtain a pseudometric.
Imposing axiom (N3), this pseudometric Becomes a metric.

Examples

Let Graph denote the category with objects graphs (V, E), where
$V=$ \{vertices $\}$ and
$E=\{$ (undirected) edses $\}$.
morphisms $(V, E) \rightarrow\left(V^{\prime}, E^{\prime}\right)$ function $f: V \rightarrow V^{\prime}$ such that
$(v, w) \in E \Longrightarrow(f(v), f(w)) \in E^{\prime}$.
(Graph, $\|.\|_{\text {set }}$) is seminormed But not
normed, e.c.

But restricting Graph to finite Graphs $\|$.$\| Set Becomes a norm:$
If V, V^{\prime} have same cardinality, every injection Between them is a Bijection.
Hence $f_{1}:(v, w) \mapsto(f(v), f(w)$ is an injection $E \rightarrow E^{\prime}$. So is
$g_{1}:(v, w) \mapsto(g(v), g(w)$.
Thus f_{1} is a Bijection.
In non-discrete examples the role of finiteness will Be played By compactness.

Let NVect $_{\mathbb{R}}^{*}$ denote the category of normed vector spaces over the reals and linear maps.

$$
\|A\|_{\text {op }}:=\log \sup _{v \in V} \frac{\|v\|_{v}}{\|A v\|_{W}}
$$

If $\|A\|=0$, then A is called expansive. $\|A\|_{\text {op }}$ is not a norm on NVect $_{\mathbb{R}}^{*}$. But on ${ }^{\text {Hilb }}$ NVect $_{\mathbb{R}}^{*}$, the subcategory of Banach spaces that admit an inner product, i.e. a Hilsert space structure. This is Because two Hilbert spaces are isomorphic iff they have the same Hilbert space dimension.

Question

Is there a connection to the more intuitive seminorm

$$
\log \sup _{v \in V} 1 \frac{\left\|A_{V}\right\| W}{\|v\|_{V}}
$$

The left dual seminorm of $\|\cdot\|$

$$
\|f\|^{* L}:=\sup _{f^{\prime}}\left(\left\|f^{\prime}\right\|-\left\|f^{\prime} ; f\right\|\right)
$$

where $X \xrightarrow{f^{\prime}} Y \xrightarrow{f} Y^{\prime}$.

Precapacities

Definition: functor

Functors are the structure presenving morphisms Between categories, i.e.
$F: C \rightarrow \underline{D}$ consists of two functions
$F_{0}: \underline{C}_{0} \rightarrow \underline{D}_{0}, F_{1}: \underline{C}_{1} \rightarrow \underline{D}_{1}$
that are compatisle with ; source, and target, i.e....
\leadsto Cat $=(\{$ categories $\},\{$ functors $\}$).
Concrete category
A concrete category is a faithful functor $F: \underline{C} \rightarrow$ Set. A functor is faithful if F_{1} is injective on $C[X, Y]$.

Subobjects

$X \xrightarrow{f} Y$ is monomorphism if $\forall h_{1}, h_{2}: X^{\prime} \rightarrow X:$ $h_{1} ; f=h_{2} ; f \Longrightarrow h_{1}=h_{2}$.
A suboblect of X is an equivalence class of monomorphisms into X. They form a partially ordered class (Sub $(X), \subseteq$):

By a concrete category with suboblects (C, F, SO) we understand a concrete category (C, F) additionally endowed with a selection function

SO: $X \mapsto \mathrm{SO}(X)$,
where $X \in \underline{C}_{0}, \mathrm{SO}(X) \subseteq \operatorname{Sub}(X)$, such that preimaces of subOBjects in SO (Y) are well-defined, i.e. for all $f: X \rightarrow Y$ and $C \in S O(Y) \exists$! maximal $B \in \mathrm{SO}(Y)$ with $|B|=(F f)^{*}(|C|)$ where $|C|:=(F C)($ source $C) \subseteq F(X)$. Write $f^{*} C:=B$.

Precapacity

A precapacity c on ($\underline{C}, F, S O$) is a
$\left\{C \in \operatorname{SO}(X) \mid X \in \underline{C}_{0}\right\} \xrightarrow{C}[0, \infty]$ that is monotone, i.e for any $B, C \in \mathrm{SO}(X): B \subseteq C \Longrightarrow$ $c($ source $B) \leq c($ source $C)$.

$$
\|f\|_{c}:=\sup _{\substack{C \in S O(Y), c(C)<\infty}} c\left(f^{*} C\right)-c(C)
$$

defines a seminorm.

ropological spaces

Let $\mathcal{X}=(X, \tau \mathcal{X})$ denote a top. space. Define the fiber dimension seminorm

$$
\|f\|_{\mathrm{fdim}}:=\|f\|_{|\log (1+\operatorname{dim})|}=\sup _{\substack{A \in \mathcal{P}(Y) \\ \operatorname{dim} A<\infty}}\left|\log \left(1+\operatorname{dim} f^{*} A\right)\right|-|\log (1+\operatorname{dim} A)| .
$$

Define $I(\mathcal{X}):=$ \{connected components $\}$ and the disconnectedness seminorm

$$
\|f\|_{\text {disconn }}:=\|f\|_{|\log \# I|}=\sup ^{0}\left\{\left|\log \left(\#\left(\mid f^{*} C\right)\right)\right|-\log (\#(I C)) \left\lvert\, \begin{array}{c}
C \subset Y \text { dosed, } \\
0<\#(I C)<\infty
\end{array}\right.\right\} .
$$

Characterization of $\|\cdot\|=0$

$f: \mathcal{X} \rightarrow \mathcal{Y}$ is

Fiber-wise characterization
By so-called Hurewicz formula

$$
\|f\|_{f \operatorname{dim}}=\sup _{y \in Y}\left|\log \left(1+\operatorname{dim}\left(f^{*} y\right)\right)\right|
$$

for a map
$f:\left(\mathrm{T}_{4}\right.$-space) \rightarrow (metrizable space).
For $\|f\|_{\text {disconn }}$ we have in General

$$
\|f\|_{\text {disconn }}=\sup _{\substack{0 \\ C \neq \emptyset \text { dosed, } \\ \# \mid(C)=1}}\left|\log \left(\#\left(\mid\left(f^{*} C\right)\right)\right)\right|
$$

and, if \mathcal{Y} is a T_{1},

$$
\|f\|_{\text {disconn }} \geq \sup _{p \in Y}^{0} \mid \log \left(\#\left(I f^{*}\{p\}\right) \mid .\right.
$$

light if the fiBer $f^{*}\{y\}$ is totally disconnected for every $y \in Y$, i.e. when $\operatorname{dim} f^{*}\{y\}=0$,
monotone if the preimage of every $\{y\} \subset \mathcal{Y}$ is nonempty and connected.

Schröder-Bernstein theorem

$$
\|f\|_{\text {top }}:=\|f\|_{\text {disconn }}+\|f\|_{\text {f dim }}
$$

Let \mathcal{X} Be compact, T_{4} and \mathcal{Y} Be
metrizable. Then $\|f\|_{\text {top }}=0 \Longrightarrow f$ is a homeomorphism.
Especially, on the category of compact metrizable spaces $\|.\|_{\text {top }}$ is a norm.

Metric spaces

Met $:=(\{$ metric spaces $\},\{$ functions $\})$.

dilatation seminorm

$$
\begin{aligned}
c(A) & :=\operatorname{diam}(A)=\sup _{x, y \in A}^{0}|x y|, \\
\|f\|_{\text {dil }} & :=\|f\|_{c} \\
& =\sup _{A \subseteq N}^{0}\left(\operatorname{diam}\left(f^{*} A\right)-\operatorname{diam}(A)\right) \\
& =\sup _{x, y \in M}^{0}(|x y|-|f(x) f(y)|) .
\end{aligned}
$$

measuring deviation from Being expansive

$$
\operatorname{diam} M=\|M \rightarrow T\|_{\text {dil }} \text {, where }
$$

$$
T=(\{\bullet\}, 0) \text { is terminal OBject. }
$$

Left dual

$$
\|f\|_{\mathrm{dil}}^{* \mathrm{~L}}=\sup _{x, y \in M}^{0}(|f(x) f(y)|-|x y|)
$$

deviation from Being a contraction.
When treating metric spaces in category theory, one normally restricts attention to contractions, though in metric space theory all kinds of maps are considered.

Let Met ${ }_{\text {ppt }}$ Be Met restricted to compact spaces.

Gromov-Hausdorff distance $\left(\left(\text { Met }_{\text {cpt }}\right)_{0}, \mathrm{~d}_{\mathrm{GH}}\right) \rightarrow\left(\left(\right.\right.$ Met $\left.\left._{\text {cpt }}\right) 0, \mathrm{~d}_{\text {dil }}^{+}\right)$is 4 -Lipschitz with continuous inverse.
$\|\cdot\|_{\text {dil }}$ is a norm on Met cpt $^{\text {. }}$

Lemma/(N4)

Let \mathcal{M} Be a compact. For every $\varepsilon>0$ there is a $\delta>0$ such that for every $h: \mathcal{M} \rightarrow \mathcal{M}$ with $\|h\|_{\text {dil }}<\delta$ implies that
(i) $h(M)$ is ε-dense, and
(ii) $\|h\|_{\text {dil }}^{* \mathrm{~L}} \leq 4 \varepsilon+C \delta$ where $C=$

$$
C(\varepsilon, \mathcal{M})
$$

Lipschitz seminorm
$\|f\|_{\text {Lip }}:=\|f\|_{\log \text { diam }}$

$$
=\sup _{x, y} \frac{|x y|_{\mathcal{M}}}{|f(x) f(y)|_{\mathcal{N}}}
$$

Further directions metric measure spaces, limits, etc.

