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¥ @eometric sturcture on col-
lection of oBjects

¥ quantitative statements
3 fixed point theorems
¥ ete

Define the WOuS4orH distance
dy (A, B) of closed sussets A, B of
a metric space M = (M, dpq) as
inf{e >0|A*CBand B° C A}
where A® is the e—thickenina
A ={xeM|TyeA: |xy|<e}

MM

—

N~

CroMov-Haysdoret distance dgy(M,N) of
two (isometry casses of) metric spaces
M= (M,dn), N = (N, dy)
inf  du(ei(M), 4i(N))

MmN
where ¢, are empeeddinas and
fi: P(X) = P(Y) imaae map for f: X — Y.
Pointed oromov-vaysdores distance
getween (M, dnq, p) and (N, dyr, q)

oo

> inf deu(Blp, r], Blg;s])

n=1 rs2
where BJp, r] is the cosed r-gall around p.
Put measure on top
~ pointed metric measure space

J technical details matter,

J axioms % Basic properties hard to
check,

3 different ways
3 incuding areitrary choices.



Easy and systematic

: ; Sets and functions.
metrizations.

M ||.]]: (functions, composition) — [0, o],
[[llset = logsup® #£*({y}),
Reoaall: dy(A, B) = S 4 Y

inf{e >0| A C B,BE C A}
Symmertrized!
Things et easier when dropping

f*: P(Y) — P(X) preimace,
sup” f(x) = {a} U {f(x) | x € X }.

ex
the symmetry requirement ¢ " ~
~> Quasimetric (i) for X - Y = Z:
llg o fllset
= logsup® #f*g*({z
Nicest metrics are induced By 2 zEp gees-i=)
Norms.
< logsup! (sup! #*({y}) - #e" ({2}))
R A
e S‘SI’%MS ?£| ! ic SJrNCfWY‘Q, 2€Z "yeY
NN Wﬁé@eﬁ [0, 00| = [[Fllset + llglsets
G|l =Xtvi, (iv) Oeserve ||f|lsee =0 <= f is injective.
(i) trianale inequality (U h?/‘/l/u ooSihEn
v+ wl| < |Iv] + llwl]l Yoy oo f: X—=Yand g: Y = X, we have

' 18 o ok |Ifllset = llgllset =0
0 M=0@K vy " Z Seiation X > v
monNL ww\h icabe



In a mathematical theory one often
deals with a specific class of ogjects
and maps Between them, ea.

¥ sets & functions,

¥ topoloaical spaces < continuous
MaPps,

¥ aroups & aroup homomorphisms,

¥ normed vector spaces % Bounded
linear maps,

¥ ete

A catecory C = (C,, Cy,;,id) comprises
C, class of oBjects,
C, class of morphisms,

source: C; — C,, target: C; — C,,

¥ ¥ ¥ ¥

composition: (f,g)— f; g

defined i$ target f = source g,
(notation f: X — Y iff X =
source f and Y = target 1),

¥ X —idx for X € C,.

such that

% source(f ; g) = source f,
target(f ; g) = targetg;

F* idy: X — X;
¥ idx;f=fand g;idx = g;
¥ ; is associative.

CIX,Y]={f|f: X> Y}
Set, Top, Gr, NVect, etc.
gof :=f;g InSet we have
(gof)(x) = (f:g)(x) = g(f(x)).
somorplis < fis
invertigle, ie. 3(g: Y — X):
idx=f;gandidx =g; f

* C, is a singleton: monaid.
I£ additionally every morphism is an
1SOMOYPhisw: Group.

¥ C[X,Y] is empty or a singleton
for every X, Y € Cg: preorder.



A semindrt on a catecory C is
amap ||.||: C; — [0, 00] such that
(ND |lidx|| =0 £or all X € Cy;

(N2 || gll < Il + llgll
(trianale inequality).

A seminorm such that for all
X, Y eC(,

(N3) if there are maps f: X = Y
and g: Y — X with ||| =
llgll = 0, then there is an
isomorphism X — Y;

(NH) i# for all € > 0 there is
f: X = Y with |f|| < ¢
then there is f: X — Y
with [|f]] = 0.

For (Set, ||.|Iset), rememser
[|f]lset = log sup! #*({y}),
YeY

axioms (NI-3) are already checked.

(NH) foliows £rom the fact that ||.[set is
discretely valued.

Let (G, ||.||) Be 8 seminormed catecorylet
sko(C, ||.]]) denote the set of isomorphism
classes of osjects in C.

Define the Quasipseudometric
where X € Xand Y € Y.
By some symmetrization, ec.
d|\‘/‘|(x = dH”(X’ Y)\/dHAH(va) or
+ !
dHAH(X’ Va)e= 5 (dHH(X’ Y)+ dHH(Y’X)>
we Ortain a pseudomertric.

Imposina axiom (N3), this pseudometric
Becomes a metric



Let Graph denote the category with

araphs (V, E), where
V = {vertices} and
E = {(undirected) edces}.
function
f: V— V' such that
(v,w) € E = (f(v),f(w)) € E".

(Graph, ||.|lset) is seminormed But not
_ 3 — oo

WA A

But restricting Graph to finite
araphs ||.||ser BeCOMeEs 8 norm:

£ V, V' have same cardinality, every
injection petween them is a

Bl jection.

Hence fi: (v, w) — (f(v), f(w) is an
injection E — E’. So is

81 (V7 W) = (g(v),g(w)

Thus fi is a Bijection.

normed, ea.

In non-discrete examples the role of
finiteness will Be played By
compactness.

Let NVecty denote the catecory of
normed vector spaces over the reals
and linear maps.

llvllv

1A]lop = log sup?
G P TAviw

I# ||All = 0,then A is called expansive.
|Allop is not 8 norm on NVectr. But
on MPNVect?, the sucatecory of
Banach spaces that admit an inner
product, ie. a Hilgert space structure.
This is Because two Hilgert spaces
are isomorphic i££ they have the same
Hilgert space dimension

Is there a connection to the more
intuitive seminorm
log sup?! 7HAVV” W
v v
The let dual seminortt of || ||
IFI*E = SL}P"(Hf’Il — 1" D)

!
where X RNV



By a concrete <aredory with

Functors are the structure preserving Subdblects (C, F,SO) we

MmOrPhisms Between catecories, ie. understand a conerete cateaory

F: C — D consists of two functions (C, F) additionally endowed with a
Fo: Cy —+ Dy, F1: C; —» D, selection function

that are compatiele with ;, source, and SO: X — SO(X),

target, ie. ... where X € C;, SO(X) C Sub(X),

such that preimaces of
sueoBjects in SO(Y) are
well-defined, ie. forall f: X - Y
and C € SO(Y) 3! maximal

B € SO(Y) with |B| = (Ff)*(|C|)
where |C| := (FC)(source C) C F(X).
Write f*C = B.

~ Cat = ({catecories}, {functors}).

A concrete <otedory is a faithful functor
F: C — Set. A functor is fithiul i F; is
injective on C[X, Y]

X L5 ¥ is M0NOMOTPWSt if Vhy, by X! — X: A Precapacity c on (C, F,SO) is a
hi;f=h;f = h=h {CeSOX)|XeCy}=[0,00]
A SubdbJect of X is an equivalence class that is monotone, ie. for any
of monomorphisms into X. They form a B,CeSO(X): BC C =
partially ordered dlass (Sub(X), C): c(source B) < c(source C).

source B —> source C Ifllc = S‘JPO c(f*C) — ¢(C)

ceso(Y),
\ / c(C)<oo
defines a seminorm.



Let X = (X, 7x) denote a top. space. Define the fiber diflension seminori
IF1lf gim = I lljtog(1rdim)| = sup’ |log(L + dim £*A)| — [log(1 + dim A)].

AEP(Y)
dim A<oco

Define I(X) := {connected components} and the disconnectedness semnort

CCY closed,

HfHdisconn = ”fH\ log #1| = supo{ IIOg(#(I i C))l = |0g(#(| C)) 0<#(I C)< o

By so-called Hurewicz formula
[|£1l¢ dim = sup [log(1 + dim(f*y))|
YeY
£or a map
f: (T4-space) — (metrizagle space).

For ||f]ldisconn We have in aeneral
[ flldisconn = sup®  [log(#(1(F*C)))|
C+#0 closed,
#1(C)=1
and, i# YVis a Ty,

”f”disconn > sup0||og(#(| f*{p})|
PEY

f:X—=Yis

196t if the fier f*{y} is totally dis-
connected for every y € Y, ie
when dim f*{y} =0,

Mon0tone if the preimace of every
{y} € Y is nonempty and con-
nected.

HthOP = ||f||disconn + ||f||fdim
Let X re compact, Ty and Y Be
metrizasle. Then ||[fllip =0 = fis a
homeomorphism.
Especially, on the catecory of
compact metrizaele spaces ||.||twp is 8
NOrm.



Met = ({metric spaces}, {functions}).

c(A) == diam(A) = sup®|x y|,
x,yEA
(£ 1lain = Il

= sup? (diam(f*A) —
ACN

diam(A))

= sup’ (Ixy| = [F(x) F()])-
x,yeM

Mmeasuring deviation £rom eeing
expansive

diam M = ||M = T”dih where
= ({#},0) is terminal cject.

IFl55 = sup® (IF(x) F(y)l — [x¥l)
x,yeM

deviation from reing a contraction
When treatina metric spaces in
category theory, one normally
restricts attention to contractions,
thouah in metric space theory all
kinds Of maps are considered.

Let Met pt B2 Me+t restricted to
compact spaces.

((mcpt)deH) ((Mcpt)o’d:il) is
H-Lipschitz with continuous inverse.

[[-|lqil is 8 Nnorm on Mcpt

Let M Be a compact. For every e > 0
there is a § > 0 such that for every
h: M — M with ||hlg1 < § implies that

() h(M) is e-dense, and
(D |lAlxk < 4e + C5 where C =
(e, M).

Hf”LiP == IIfH|0gdiam
= Ix ylm

VT FO)

metric measure spaces, limits, ete



	The idea

