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Metrizations
Motivation

* geometric sturcture on col-

lection of objects

* quantitative statements

* fixed point theorems

* etc.

Easy example

Define the Hausdorff distance
dH(A,B) of closed subsets A,B of

a metric space M = (M, dM) as

inf{ ε > 0 | Aε ⊂ B and Bε ⊂ A }
where Aε is the ε-thickening

Aε := { x ∈ M | ∃y ∈ A : |x y | ≤ ε }.

More complicated ones
Gromov-Hausdorff distance dGH(M,N ) of

two (isometry classes of) metric spaces

M = (M, dM), N = (N, dN )
inf

M
ϕ−→L ψ←−N

dH(ϕ!(M), ψ!(N))

where ϕ,ψ are embeddings and

f! : P(X)→ P(Y ) image map for f : X → Y .

Pointed Gromov-Hausdorff distance
between (M, dM, p) and (N, dN , q)
∞∑

n=1
inf

r,s≥n
dGH(B[p, r ],B[q, s])

where B[p, r ] is the closed r-ball around p .

Put measure on top

 pointed metric measure space

Clear it works, but

* technical details matter,

* axioms & basic properties hard to

check,

* different ways

* including arbitrary choices.



Idea
Aim
Easy and systematic

metrizations.

First Observation
Recall: dH(A,B) =
inf{ ε > 0 | Aε ⊂ B,Bε ⊂ A }.
Symmetrized!

Things get easier when dropping

the symmetry requirement

 quasimetric

Second observation
Nicest metrics are induced by

norms.

Recall Axioms of ‖.‖:

(i) ‖.‖ : vector space→ [0,∞),
(ii) ‖λ.v‖ = λ‖v‖,
(iii) triangle inequality

‖v + w‖ ≤ ‖v‖+ ‖w‖

(iv) ‖v‖ = 0 ⇐⇒ v = 0

The priordial example
Sets and functions.

(i) ‖.‖ : (functions, composition)→ [0,∞],
‖f ‖set := log sup1

y∈Y
#f ∗({y}),

where

f ∗ : P(Y )→ P(X) preimage,

supa
x∈X

f (x) := {a} ∪ { f (x) | x ∈ X }.

(iii) for X f−→ Y g−→ Z :
‖g ◦ f ‖set

= log sup1

z∈Z
#f ∗g∗({z})

≤ log sup1

z∈Z

(
sup1

y∈Y
#f ∗({y}) ·#g∗({z})

)
= ‖f ‖set + ‖g‖set ,

(iv) Observe ‖f ‖Set = 0 ⇐⇒ f is injective.

Schröder-Bernstein theorem: given

f : X → Y and g : Y → X , we have

‖f ‖Set = ‖g‖Set = 0
=⇒ ∃ bijection X → Y



Brief introduction to category theory
Observation
In a mathematical theory one often

deals with a specific class of objects

and maps between them, e.g.

* sets & functions,

* topological spaces & continuous

maps,

* groups & group homomorphisms,

* normed vector spaces & bounded

linear maps,

* etc.

Definition
A category C = (C0,C1, ;, id) comprises

* C0 class of objects,

* C1 class of morphisms,

* source : C1 → C0, target : C1 → C0 ,

* composition: (f , g) 7→ f ; g
defined if target f = source g ,

(notation f : X → Y iff X =
source f and Y = target f ),

* X 7→ idX for X ∈ C0 .

such that

* source(f ; g) = source f ,
target(f ; g) = target g ;

* idX : X → X ;

* idX ; f = f and g ; idX = g ;

* ; is associative.

Notation C [X ,Y ] := { f | f : X → Y }
Notation Set, Top, Gr, NVect, etc.

Notation g ◦ f := f ; g . In Set we have

(g ◦ f )(x) = (f ; g)(x) = g(f (x)).
f : X → Y is an isomorphism ⇐⇒ f is

invertible, i.e. ∃(g : Y → X) :
idX = f ; g and idX = g ; f

Examples

* C0 is a singleton: monoid.

If additionally every morphism is an

isomorphism: group.

* C [X ,Y ] is empty or a singleton

for every X ,Y ∈ C0 : preorder.



The Axioms

Definition: seminorm
A seminorm on a category C is

a map ‖.‖ : C1 → [0,∞] such that

(N1) ‖idX‖ = 0 for all X ∈ C0 ;

(N2) ‖f ; g‖ ≤ ‖f ‖+ ‖g‖
(triangle inequality).

Definition: norm
A seminorm such that for all

X ,Y ∈ C0
(N3) if there are maps f : X → Y

and g : Y → X with ‖f ‖ =
‖g‖ = 0, then there is an

isomorphism X → Y ;

(N4) if for all ε > 0 there is

f : X → Y with ‖f ‖ ≤ ε,
then there is f : X → Y
with ‖f ‖ = 0.

Back to priordial example
For (Set, ‖.‖Set), remember

‖f ‖set = log sup1
y∈Y

#f ∗({y}),

axioms (N1-3) are already checked.

(N4) follows from the fact that ‖.‖Set is

discretely valued.

Metrization
Let (C , ‖.‖) be a seminormed category.Let

sk0(C , ‖.‖) denote the set of isomorphism

classes of objects in C .

Define the quasipseudometric

d‖.‖(X̂ , Ŷ ) := inf{ ‖f ‖ | f : X → Y }
where X ∈ X̂ and Y ∈ Ŷ .

By some symmetrization, e.g.

d∨‖.‖(X ,Y ) := d‖.‖(X ,Y ) ∨ d‖.‖(Y ,X) or

d+
‖.‖(X ,Y ) := 1

2

(
d‖.‖(X ,Y ) + d‖.‖(Y ,X)

)
we obtain a pseudometric.

Imposing axiom (N3), this pseudometric

becomes a metric.



Examples
Let Graph denote the category with

objects graphs (V ,E), where

V = {vertices} and

E = {(undirected) edges}.
morphisms (V ,E)→ (V ′,E ′) function

f : V → V ′ such that

(v ,w) ∈ E =⇒ (f (v), f (w)) ∈ E ′ .

(Graph, ‖.‖Set) is seminormed but not

normed, e.g.

But restricting Graph to finite

graphs ‖.‖Set becomes a norm:

If V , V ′ have same cardinality, every

injection between them is a

bijection.

Hence f1 : (v ,w) 7→ (f (v), f (w) is an

injection E → E ′ . So is

g1 : (v ,w) 7→ (g(v), g(w).
Thus f1 is a bijection.

In non-discrete examples the role of

finiteness will be played by

compactness.

Let NVect∗R denote the category of

normed vector spaces over the reals

and linear maps.

‖A‖op := log sup1
v∈V

‖v‖V
‖Av‖W

If ‖A‖ = 0, then A is called expansive.
‖A‖op is not a norm on NVect∗R . But

on HilbNVect∗R , the subcategory of

Banach spaces that admit an inner

product, i.e. a Hilbert space structure.

This is because two Hilbert spaces

are isomorphic iff they have the same

Hilbert space dimension.

Question
Is there a connection to the more

intuitive seminorm

log sup1
v∈V

‖Av‖W
‖v‖V

The left dual seminorm of ‖.‖
‖f ‖∗L := sup0

f ′
(‖f ′‖ − ‖f ′ ; f ‖)

where X f ′
−→ Y f−→ Y ′ .



Precapacities
Definition: functor
Functors are the structure preserving

morphisms between categories, i.e.

F : C → D consists of two functions

F0 : C0 → D0 , F1 : C1 → D1
that are compatible with ;, source, and

target, i.e. . . . .

 Cat = ({categories}, {functors}).

Concrete category

A concrete category is a faithful functor

F : C → Set. A functor is faithful if F1 is

injective on C [X ,Y ].

Subobjects

X f−→ Y is monomorphism if ∀h1, h2 : X ′ → X :

h1 ; f = h2 ; f =⇒ h1 = h2 .

A subobject of X is an equivalence class

of monomorphisms into X . They form a

partially ordered class (Sub(X),⊆):
source B source C

X

ϕ

B
C

By a concrete category with
subobjects (C ,F , SO) we

understand a concrete category

(C ,F ) additionally endowed with a

selection function

SO: X 7→ SO(X),
where X ∈ C0 , SO(X) ⊆ Sub(X),
such that preimages of

subobjects in SO(Y ) are

well-defined, i.e. for all f : X → Y
and C ∈ SO(Y ) ∃! maximal

B ∈ SO(Y ) with |B| = (Ff )∗(|C |)
where |C | := (FC)(source C) ⊆ F (X).
Write f ∗C := B .

Precapacity

A precapacity c on (C ,F , SO) is a

{C ∈ SO(X) | X ∈ C0 }
c−→ [0,∞]

that is monotone, i.e. for any

B,C ∈ SO(X): B ⊆ C =⇒
c(source B) ≤ c(source C).
‖f ‖c := sup0

C∈SO(Y ),
c(C)<∞

c(f ∗C)− c(C)

defines a seminorm.



Topological spaces
Let X = (X , τX ) denote a top. space. Define the fiber dimension seminorm
‖f ‖f dim := ‖f ‖|log(1+dim)| = sup0

A∈P(Y )
dim A<∞

|log(1 + dim f ∗A)| − |log(1 + dim A)|.

Define I(X ) := {connected components} and the disconnectedness seminorm
‖f ‖disconn := ‖f ‖| log #I| = sup0

{
|log(#(I f ∗C))| − log(#(I C))

∣∣ C⊂Y closed,

0<#(I C)<∞
}
.

Fiber-wise characterization
By so-called Hurewicz formula

‖f ‖f dim = sup
y∈Y
|log(1 + dim(f ∗y))|

for a map

f : (T4-space)→ (metrizable space).
For ‖f ‖disconn we have in general

‖f ‖disconn = sup0

C 6=∅ closed,

# I(C)=1

|log(#(I(f ∗C)))|

and, if Y is a T1 ,

‖f ‖disconn ≥ sup0
p∈Y
|log(#(I f ∗{p})|.

Characterization of ‖.‖ = 0
f : X → Y is

light if the fiber f ∗{y} is totally dis-

connected for every y ∈ Y , i.e.

when dim f ∗{y} = 0,
monotone if the preimage of every

{y} ⊂ Y is nonempty and con-

nected.

Schröder-Bernstein theorem
‖f ‖top := ‖f ‖disconn + ‖f ‖f dim

Let X be compact, T4 and Y be

metrizable. Then ‖f ‖top = 0 =⇒ f is a

homeomorphism.

Especially, on the category of

compact metrizable spaces ‖.‖top is a

norm.



Metric spaces
Met := ({metric spaces}, {functions}).

dilatation seminorm

c(A) := diam(A) = sup0

x,y∈A
|x y |,

‖f ‖dil := ‖f ‖c

= sup0

A⊆N
(diam(f ∗A)− diam(A))

= sup0

x,y∈M
(|x y | − |f (x) f (y)|) .

measuring deviation from being

expansive

diam M = ‖M → T‖dil , where

T = ({•}, 0) is terminal object.

Left dual
‖f ‖∗Ldil = sup0

x,y∈M
(|f (x) f (y)| − |x y |)

deviation from being a contraction.

When treating metric spaces in

category theory, one normally

restricts attention to contractions,

though in metric space theory all

kinds of maps are considered.

Let Metcpt be Met restricted to

compact spaces.

Gromov-Hausdorff distance
((Metcpt)0, dGH)→ ((Metcpt)0, d+

dil) is

4-Lipschitz with continuous inverse.

‖.‖dil is a norm on Metcpt .

Lemma/(N4)
Let M be a compact. For every ε > 0
there is a δ > 0 such that for every

h : M→M with ‖h‖dil < δ implies that

(i) h(M) is ε-dense, and

(ii) ‖h‖∗Ldil ≤ 4ε + Cδ where C =
C(ε,M).

Lipschitz seminorm
‖f ‖Lip := ‖f ‖log diam

= sup
x,y

|x y |M
|f (x) f (y)|N

Further directions
metric measure spaces, limits, etc.


	The idea

